NASA
Technical
Memorandum

NASA TM - 103517

AN IMPROVED EXPLORATORY SEARCH TECHNIQUE
FOR PURE INTEGER LINEAR PROGRAMMING
PROBLEMS

By F.R. Fogle

Systems Analysis and Integration Laboratory

Science and Engineering Directorate

October 1990

(NASA-TM-103517) AN [MPROVFD EXPLORATURY N91-13910
SFARCH TECHNIDUE FOR PURE INTFGFR LINEAR
PROGRAMMING PRORLEMS (NASA) 130 p CSCL 098 Unclas

NNASA

National Aeronautics and
Space Administration

63/61 0319016

George C. Marshall Space Flight Center

MSFC - Form 3190 (Rev. May 1983)

Netional Aeronautics and
Space Administration

Report Documentation Page

1.

Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA TM-103517

. Title and Subtitle 5. Report Date

An Improved Exploratory Search Technique for Pure Integer October 1390

Linear Programming Problems 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
F.R. Fogle
10. Work Unit No.

. Performing Organization Name and Address

11. Contract or Grant No.

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20546

15. Supplementary Notes

Prepared by Systems Analysis and Integration Laboratory, Science and Engineering Directorate.

iC DoCueER w8

i

16.

Abstract <
This report documents the development of a heuristic procedure for the solution of pure integer linear

programming problems. The procedure draws its methodology from the ideas of the Hooke and Jeeves
type I and type II exploratory searches, greedy procedures, and neighborhood searches. It utilizes an
efficient rounding procedure to obtain its first feasible integer point from the optimal continuous solution
obtained via the simplex method.

Since this procedure is based entirely on simple addition or subraction of one to each variable of a
point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it
facilitates significant complexity improvements over existing techniques. It also obtains the same optimal
solution found by the branch-and-bound technique in 44 out of 45 small to moderate size test problems.
Two example problems are worked in detail to show the inner workings of the procedure. Furthermore,
using an established weighted scheme for comparing computational effort involved in an algorithm, a
comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A
computer implementation of the procedure, in PC-compatible Pascal, is also presented and discussed.
This procedure for finding optimal solutions to integer-type problems may be applied to various systems
engineering situations in the conceptual, preliminary, and detail design phases of the system development
cycle

17. Key'Words (Suggested by Author(s)) 18. Distribution Statement
. . AWV ELETIC st WonS
Systems Engineering CTLRANONSG TRMARTN
Integer Programming Unclassified — Unlimited

Optimization Techniques

19. Security Classif. (of this report) 20. Security Classil. (of this page) 21. No. of pages 22. Price
Unclassified Unclassified 131 NTIS
NASA FORM 1626 OCT 86

For sale by the National Technical Information Service, Springfield, VA 22161-2171

-

-l

II.

II.

IV.

INTRODUCTION

A. Background
B. Research Topic...........

TABLE OF CONTENTS

...

C. Description of Succeeding SEctions..........cvovvviiiiiiiii i

LITERATURE REVIEW ...

A. Introduction
B. Integer Programming....
General................
Cutting Methods

Nonlinear Problems .
Rounding Procedures
. Applications..........
C. Hooke and Jeeves Direct

1. Theory............o.nn.

NG W=

...

Enumerative Methods..........c.oooi i
Heuristic, Approximate, and Direct Search Approaches.......................oenes

-------------------------------------- Brerasssusarsnssrnsosessrarasnenenses

N =7 1 o) ¢ S

...

2. Hooke and Jeeves Example ..o
3. Improvements, Advantages, and Disadvantages....................coovvviiiiiinn.

PROPOSED ALGORITHM
TECHNIQUE FOR INTEG

A. Approach
I. General................

- AN IMPROVED EXPLORATORY SEARCH |
ER PROGRAMMING (IESIP)coovviiviiiiis

2. Solution Procedure and Modifications Required to Existing Schemes
3. Advantages in Using the Proposed Procedurecooooiiiin,
B. Other Details of AIgorithmcooiiiiiiiiii

1. Rounding to Discrete

Starting Solution ...

2. Constraint INVOIVEmMENt ittt ittt rive e eranerrraarareracaaees

3. StoppingRule
. Example Problems.......

C
D. Justification of Optimality.......... .o
E. Computer Implementation...............ooiiiiiiiiiiiiii i

COMPARISON OF RESULTS - COMPUTATIONAL EXPERIMENTS.................

A. Algorithm Performance Measurescccooeoeiiiiiiii

1. Current Methods.....
2. Proposed Alternative

...

iii

PRECEDING PAGE BLANK NOT FILMED

22

22
22
22
28
29
29
30
30
32
40
41

45

TABLE OF CONTENTS (Continued)

Page
B. Algorithm Computational Complexity Scoringc..ooiiiiiii s 46
1. Number of OPerationscooviviuiiiiuiiiiiiiiiiiiine e 47
2. Weight Associated With Each Operation.............coooiiiinn, 49
C. Example Problemooiiiiiiiiiiiii 50

D. Computational Experience With Test Problems...............c.cooviii, 55

E. Multiple Optimaocovuviiinininniniiiiiee et 56

F. Restrictions Required of IESIP..........coooiiiiiiiiiii 58

V. CONCLUSIONS AND RECOMMENDATIONSooiiiiiiiinninn s 59
YN O)1 To) 113 1o 1 59

B. Recommendations for Future Work.............coooiiiiiiiiiii 60
REFERENCES ... ittt ettt e s e e s s e ae e b et e st s et e e e eneas 61
BIBLIOGRAPHY ..ottt ittt st a et e e e e s e e eees 65
APPENDIX A - Fractional Cut and Branch-and-Bound Examples..................cooiinns 71
APPENDIX B — IESIP Pascal Computer Codeccoiviimiiiiiiiiiiiiiiiiiiiiienns 83
APPENDIX C —Test PrODIEIMSvvieiiiiniintiiiie ittt s ae et rnenes s sasaneeaneaes 111

iv

'
1“'

Al
o

Figure

10.

11.

LIST OF ILLUSTRATIONS

Title Page
Area of feasible integer SOIUtIONScoooiiiiiiiiir 6
LT 11703 o A o 113 T E T L R R TRTE 7
Cutting plane procedure block diagram..............oooiii 8
Branch-and-bound tree diagramooioiiiiiiiiiiii 10
The branch-and-bound procedure........................... e 11

Information flow diagram for direct minimization using

Hooke and Jeeves pattern search.........coooiiiiinnniiii 17
Hooke and Jeeves exploratory and pattern MmOVESo.vveveiierriiin e, 18
Hooke and Jeeves exploratory search progression...........cooovivivinviainnnininiiinne, 23
Modified type I exploratory searchooooiiiiii 25
IESIP description flow diagramoooiiiiiiii 27
Two variable example problemooiiiiiiiii 36

Table

LIST OF TABLES

Title

Sample input for IESIP computer programovvviiiiiiininenneeinnienenns

Sample output for IESIP computer programoeovevivieininiiininiin..

Worst case miCroprocessor instruction timesovviiiiiiininnec s

Computational results of test problems..............oovii

Summary of test problem results

..

Page
42
43
50
53

54

ﬂl

Pl

TECHNICAL MEMORANDUM

AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER
LINEAR PROGRAMMING PROBLEMS

I. INTRODUCTION
A. Background

Optimization, as related to mathematical programming, means to maximize (or minimize) an
objective function of one or more variables subject to a set of confining functions or constraints.
The distinguishing feature of discrete optimization, also referred to as integer programming or
integer optimization, is that some or all of the variables are required to be in a discrete set,
typically a subset of integers. These discrete (or integer) restrictions allow the mathematical
representation of phenomena or alternatives where indivisibility is required or where there is not a
continuum of alternatives.

The normal linear programming problem generally results in an optimal solution that has
fractional (continuous) values for some or all of its decision variables. However, these fractional
values in an optimal solution are not always acceptable as a realistic solution. For example, in a
production optimization problem, 25.7 houses, 18.6 airplanes, or 5.4 machines may constitute
optimal solutions, but do not represent useful results. Rounding off these results to produce integer
solutions may lead to an infeasible solution, or such a solution may not be the global optimal
integer solution for the problem. In these situations, only the integer programming problem and its
solution can provide acceptable results. An integer programming problem where all the variables
are restricted to integer values is called a “pure integer programming problem.” A “mixed integer
programming problem™ has some variables that are restricted to integers while others are allowed to
be fractional (continuous). There is also a special type of integer programming problem called the
“zero-one integer problem.”™ in which some or all decision variables are restricted to values of
either zero or one.

Practical discrete (integer) optimization problems are very prevalent. An important and wide-
spread area of application concerns the management and efficient use of scarce resources to
increase productivity. These include operational problems such as the distribution of goods,
machine scheduling, and production scheduling. They also include planning problems such as capi-
tal budgeting, facility location, and portfolio selection. Also included are design problems such as
telecommunications, power system, transporation network design, VLSI circuit design, and the
design of automated production systems. Integer optimization problems also arise in statistics (data
analysis), physics (determination of minimum energy states), cryptography (designing unbreakable
codes), and mathematics (proving combinatorial theorems). Moreover, applications of integer
optimization are in a period of rapid development because of the widespread use of microcomputers
and the data provided by information systems [1]. This rapid development is more pronounced in
the manufacturing sector of the economy where increased competition and flexibility provided by
new technology in the global marketplace make it imperative to seek better solutions from larger,
more constraining, and more complex sets of alternatives.

Integer programming is one approach to problems of combinatorial optimization. A com-
binatorial optimization problem is defined as assigning discrete numerical values to a finite set of
variables so as to maximize some objective function while satisfying a given set of constraints on
the values the variables can assume. The transportation problem and the assignment problem are
familiar examples. The transportation problem is an integer programming problem and the assign-
ment problem is a zero-one programming problem. Elementary considerations can teach some
important lessons regarding the numerical complexity and vastness these integer programming
problems can possess. Any solution method that requires the enumeration of all 2" possible combina-
tions of “yes” and “no” decisions on n items may work well for up to 10 or 20 items. However,
complete enumeration of all 2" combinations requires 1,000 times as much work when n increases
from 20 to 30 [2]. It is this potential cost of both time and money regarding enumeration of possi-
bilities that has encouraged extensive theoretical research over the past three decades. This discus-
sion will build on some of this theoretical research and also attempt to develop a new methodol-
ogy. This new procedure will draw principally on the developments from the nonlinear pro-
gramming arena, specifically the 1961 work of Robert Hooke and T. A. Jeeves.

B. Research Topic

The research topic documented in this report will establish a new methodology for solving
pure integer programming problems by utilizing a modified version of the univariate exploratory
move developed by Robert Hooke and T. A. Jeeves. Their technique was originally developed for
application to nonlinear continuous problems. The method will also take some of its technique from
the greedy procedure and the idea of unit neighborhoods. A rounding scheme will be determined
which best suits the needs of these type problems. This scheme will use the continuous solution
found by traditional methods (simplex or other suitable technique) and will create a feasible integer
starting point. The Hooke and Jeeves exploratory search will be modified to accommodate integers
and constraints and will then be employed to determine an optimal integer solution from the
feasible starting solution. A user-friendly computer routine is presented that allows for rapid solu-
tion of problems up to 20 variables in size.

Two of the 45 test problems will be presented in detail. The remaining 43 problems are
solved using the traditional branch-and-bound method and then compared by a computational
complexity factor to the new technique. A separate set of appendices will document the software
used, the test problems, and the details of two more accepted procedures for solving integer
programming problems, fractional-cut, and branch-and-bound.

C. Description of Succeeding Chapters

The pertinent literature which was reviewed during this research is discussed in section II.
The literature review was directed toward traditional integer programming techniques and the theory
behind the exploratory and pattern searches developed by Robert Hooke and T. A. Jeeves. Also
discussed are any relevant data on research regarding the use of direct search techniques on integer
programming problems.

I

”

Section III discusses in detail the new algorithm, Improved Exploratory Search Integer
Programming (IESIP). Examples of small variable and constraint size are presented to show the
technique’s inner workings. Also shown is the justification for accepting the solution found as the
optimal.

Section III also provides the computer implementation of the technique. Section IV extends
this discussion to examples and compares the new technique on a basis of computational com-
plexity to the branch-and-bound method. Some of the same examples presented in section III are
revisited along with larger and more difficult problems.

In section V, conclusions are drawn from the research and computational experiments.
Recommendations and suggestions for future research are also presented.

Il. LITERATURE REVIEW

A. Introduction

The focus of the literature review was on the following topical areas: traditional integer
programming techniques, heuristic and approximate techniques, integer rounding, nonlinear tech-
niques, and the theory and methodology behind the Hooke and Jeeves direct search technique.

A review of the 1960 through September 1989 “Dissertations Abstracts International™ (Science and
Engineering) substantiated the belief that no dissertations have been written that specificially present
the methodology shown in this report for the solution of integer programming problems. The
abstracts were examined back to 1960. since this was the general timeframe of the inception of
both integer programming and the Hooke and Jeeves procedure. Further examination of technical
literature during the same time period was conducted by utilizing an online computer search avail-
able at the Redstone Scientific Information Center (RSIC). It also revealed no articles on the
proposed subject. The only related areas of discussion were direct search techniques (which will be
examined in more detail in section B.4). but none of them used the proposed procedure as their
methodology.

B. Integer Programming
1. General

As stated earlier, integer programming concerns itself with the class of optimization
problems in which some or all the variables are required to be integer. More specifically, it can be
stated that any decision problem with an objective function to be maximized (or minimized) in
which the variables must assume nonfractional or discrete values may be classified as an integer
optimization problem [3].

Integer programming confines itself to a specific group of problems that are part of a larger
classification known as “mathematical programming™ problems. Garfinkel and Nemhauser [4]
present the following notation in representing mathematical and integer programming problems:

A general mathematical programming problem can be stated in the form
max lx) ; veSCR (1

where R" is the set of all n-dimensional vectors of real numbers and f is a real-valued function
defined on S, where S is called the constraint set and f is called the objective function. Every x € §
is a feasible solution to equation (I). An integer programming problem is a mathematical pro-
gramming problem in which

ng” QR"

where Z" is the set of all n-dimensional integer vectors.

For the linear case, an integer programming problem is formulated as
fix) = cx

and
S = {xJAx = b, x = 0 integer} (2)
where A is an m X n matrix; b is an m-vector; ¢ is an n-vector; and O is an n-vector of zeros. The

set S is a convex set of linear constraints which is also mathematically referred to as a polyhedron
or polytope. The more standard form of the integer linear programming problem (ILP) is

max (min) cx
subject to Av = b 3)

x =2 0 and integer,

or written in summation notation,

n
max (min) .21 ¢ X 4)
J._—

,A"

-

11
subject to 2 a; X, (
j=1 '

(A
v
Il
z
3

v, = 0 and integer, j = 1,2,..,n.

This is the standard linear formulation of integer programming problems. Nonlinear
problems and their current solution methods will be discussed later. If all variables x; in equation
(4) are restricted to integer values. the problem is referred to as a “pure” integer problem. Other-
wise. il some x, values can take on real values. then the problem becomes a "mixed™ integer
problem.

Much progress has been made in developing procedures for handling these type problems.
Since the pioneering work of Ralph Gomory in the late 1950°s, integer programming has been an
exciting and rapidly developing area of operations research [4]. The past three decades have
witnessed extensive theoretical research in this area. The result is a vast collection of solution
methods and algorithms and numerous applications to real-world problems.

Current methods for handling integer programming problems generally are categorized into
the following two broad types: (1) cutting methods and (2) search (or enumerative) methods.
Cutting methods systematically add special “secondary™ constraints to the continuous optimum,
which represent necessary conditions for integrality. The continuous solution space is modified by
these cuts until its continuous optimum extreme point satisfies the integer conditions. This group of
IP methods gets its name from the fact that the added “secondary™ constraints cut (or eliminate)
parts of the solution space that do not contain feasible integer points. In contrast, search methods
have their roots in the idea of enumerating all feasible integer points. The basic idea is to test only
a small portion of the feasible integers explicitly, but also account for the remainder implicitly. The
now famous branch-and-bound technique, originally developed by A. H. Land and A. G. Doig in
1960, is the most common of the search methods. It, like the cutting methods, starts with a con-
tinuous optimal solution, but then systematically “partitions™ the solution space into smaller
subproblems by deleting parts that are integrally infeasible [5].

The above-mentioned categories of integer programming problems, cutting methods, and
search methods, will now be discussed separately and in detail.

2. Cutting Methods

The optimal solution to an integer linear programming problem can very well be an interior
point of the set of all feasible solutions. Therefore, algorithms (e.g., simplex) that explore only the
extreme points of this set, will be unable to locate such a solution. One way to eliminate this
problem is by cutting off sections of the initial set of feasible solutions with hyperplanes such that
the optimal integer solution becomes an extreme point of the new set of feasible solutions. Hyper-
planes so used are called “cutting” planes. There are many ways and variations on methods for
obtaining these cutting planes, but this discussion will concentrate mostly on the original method
developed in 1958 by Ralph Gomory [6].

Cutting planes were used as early as 1952, when Dantzig, Fulkerson, and Johnson began
work on the familiar traveling salesman problem. They employed subtour elimination constraints as
well as ad hoc linear constraints generated to exclude a current fractional answer. By 1958,
Gomory had developed his finitely convergent cutting plane method [7]. In 1960, Gomory pro-
duced a second cutting plane algorithm for integer programming that computationally requires only
additions and subtractions [8].

As stated earlier, the cutting plane method attempts to pare down the feasible solution space
so that it contains integer corner points. Figure | is a graphic representation of a typical two-
variable feasible solution area for a maximization problem.

The cutting planes reduce the area of feasible solutions to “force™ integer corner points.
Three cutting planes (1, 2, and 3) have been added in figure 2, which slice into the solution space,
thereby eliminating some of the shaded portion in the original solution space. The boundaries of
the reduced area of feasible solutions are said to make up the “convex hull.” This is defined as the
smallest convex set necessary to include all the feasible integer points [5].

The detailed mechanics of how cutting plane equations are developed are illustrated by
example in appendix A. Here we will only offer a feeling for how the procedure works. First,
cutting planes are developed in order to force the noninteger valued variables to integer values. If a
starting solution involves a number of noninteger variables, then usually one variable is selected to
provide the basis for developing a new constraint (cutting plane). Once the constraint has been

X2 A

Figure 1. Area of feasible integer solutions.

”

Y

X1

Figure 2. Gomory’s cuts.

identified, it can be added to the original constraint cut and then, by utilizing the dual simplex
method, the constraint is incorporated in the final tableau of the previous solution. This allows the
optimal solution of the larger problem to be found without starting from scratch. Sometimes, it is
not necessary to add enough cutting planes to reduce the solution space to its convex hull. Depend-
ing on the objective function, it may take as little as one cutting plane to reach the optimal integer
solution. This algorithm is sometimes referred to as the “fractional method™ because all the nonzero
coefficients of the generated cut are less than one. The block diagram in figure 3 illustrates the
Gomory cutting lane procedure in a logical flow process. The fractional cutting method is
applicable to pure integer programming problems while its counterpart, “the mixed algorithm,” is
designed for the mixed integer problem.

Many modifications and extensions to Gomory’s basic algorithm have been developed since
1960. In 1965, Glover produced a dual algorithm for solving pure integer problems. The general
idea of Glover’s method is to find the optimal integer solution by determining lower bounds on
each variable in such a way as to satisfy a necessary integrality condition. Ben-Israel and Charnes
were the first to suggest a primal cutting algorithm along the same ideas of Gomory’s all integer
cutting method in 1962. The basic difference is that primal (integer) feasibility is maintained at all
stages of calculations. Glover and Young developed the primal cutting plane algorithms further in
1968 and 1971, respectively [3].

Continuous Is the
start +—>4 Solution L >J Solution |—Yes—>| Stop

Found Via >4 Integer?

Simplex i
No
Solve Using T Add
Dual < Gomory's
Simplex 1 Cut

Figure 3. Cutting plane procedure block diagram.

No single cutting procedure can be considered uniformly superior from a computational
standpoint, although in isolated cases of specially structured problems cuts have proven effective.
The general feeling among most experts is that cutting methods should not be relied upon to solve
integer problems regardless of size. Experience has shown that some rather small problems could
not be solved by cutting methods. For instance, cases have been reported of random changes in
constraint order causing computationally easy problems to become extremely formidable [5].
Certain problems, however, tend to be solved easily using cuts such as Gomory’s original frac-
tional cutting plane method. Among these are set covering problems such as those encountered in a
typical crew scheduling problem.

3. Enumerative Methods

There is no generally accepted terminology for the class of integer programming methods
known as branch-and-bound, search, or enumerative procedures. Each of these titles refers to
methods for solving integer programming problems by breaking up the feasible set into subsets,
calculating bounds on the objective function value over each subset, and using the bounds to dis-
card certain subsets of solutions from consideration. However, within this general class of methods,
one can distinguish two basic prototypes. One, introduced by Land and Doig [9] in 1960, and later
modified by Dakin in 1965 [10], and Driebeck in 1966 [11], is aimed at solving several pure and
mixed integer problems and uses linear programming as its main vehicle. The other one, typified
by Balas in 1965 [12], Lemke and Speilberg in 1967 [13], and Geoffrion in 1969 [14], is con-
cerned only with solving 0-1 problems and uses as its main tool logical tests exploring the
implications of the binary nature of the variables or inequalities. Most practitioners prefer to
reserve the term branch-and-bound for the first of the above two approaches while calling the
second one “implicit” enumeration. Others consider this distinction less and less relevant with the
passage of time, as the two approaches are increasingly borrowing from each other, to the extent

that the more recent algorithms usually contain elements of both.

The branch-and-bound techniques like the cutting plane methods solve integer programming
problems by first considering their continuous solution. But, as mentioned earlier and in contrast to
cutting methods, branch-and-bound applies itself directly to both “pure™ and “mixed” problems.
The general procedure for the branch-and-bound method will briefly be discussed below and a
detailed example problem presented in appendix A.

8

”

-

The branch-and-bound method for the solution of a constrained integer problem uses
basically the following steps:

® Branching Step: The solution starts with the partitioning of all feasible solutions into
smaller subsets, each representing a subproblem of the original problem.

® Bounding Step: Then the method finds, for a given subset, a lower bound value Z for
an objective function (maximization problem). Usually, this is the value of the objective
function for the best feasible integer solution found so far.

® Fathoming Step: After each branching and bounding step, the method excludes a par-
ticular subset from further consideration if (1) the subset has no feasible solution, (2) the
subset is feasible but has a lower bound value less than or equal to the lower bound
value of a feasible solution known to date, and (3) the subset has already reached its best
feasible solution.

® Terminating Step: The partitioning of all feasible solutions of the original problem con-
tinues through the repetition of the first three steps. When a feasible solution is found for
any subset that is higher than the best lower bound value known to date, the new value
becomes the new lower bound of the original problem. At the end of this systematic
search process, the lower bound value, which remains uncontested, determines the
optimal solution of the problem.

The history and systematic approach to branching-and-bounding of the subsets can be shown

in a tree diagram similar to the example problem shown below and in figure 4. Each node of this
diagram represents a subset defined by a subproblem.

maximize Z = flv;,x5) = 2v;+ 8y,

subject to: 2y, —6x, < 3
—ly,+4x, =5
2v,+2xv = |3

Xt 2= 0 and integer

The flow chart depicted in figure 5 summarizes the branch-and-bound procedure.

Branch-and-bound methods have historically been more readily applied to problems for the
following two reasons: (1) they can be developed and modified to enumerate only a portion of all
candidate solutions while automatically discarding the remaining points as nonpromising, and (2)
they lend themselves readily to computer-based solutions [16]. The one major disadvantage of this

Initial Node

Xl = 4,2
X2 = 2.3
Z = 26.8
Xy 2 5 Xy < 4
First Node Second Node
X9 = 5 Xy = 4
1 1l
X2 = 1.5 X2 = 2.25
2 = 22 Z = 26
Xy 2 3 Ky < 2
Third Node Fourth Node
Xy = 4 Xy = 4
I I
Infeasible Z = 24
Fathomed Optimal Solution

Figure 4. Branch-and-bound tree diagram.

y

Solve the continuous
(non-integral) ver-
sion of the original
problem. cCall this,
temporarily, problem A

easible
solution?

No (Stop)

Integer Yes op
requirements S0
satisfied? ha

Stop:
timal
lution
s been
found.

Arbitrarily select from the solution to
problem A a required integer variable,
X5, which is not integer in value. If
tﬂe value of x5 is b, form two descen-
dant problems ghat aAd to problem A

the following constraints, respectively

a. Xj

1A

integer portion of bj
b. Xj 2 next integer greater than bj

Solve the continuous versions of the
two descendant problems.

|

From all feasible problems presently not

having descendants, determine which has
the best value of the objective func-
tion. Rename this problem problem A.

Figure 5. The branch-and-bound procedure [15].

11

classs of methods is that it is necessary to solve a complete linear programming problem at each
node. In spite of this, branch-and-bound methods are the most effective in solving integer pro-
gramming problems of practical size. Most all available commercial codes are based on these
methods. This does not mean that all integer-type problems are solved with branch-and-bound
methods, but rather that if given a choice between a cutting plane method and a branch-and-bound,
the latter is usually utilized [5].

4. Heuristic, Approximate, and Direct Search Approaches

Another approach to solving integer programming problems that has received attention has
been the use of nonexact (heuristic or approximate) procedures. Many of these techniques give an
approximate solution to the problems. They are designed to provide a “good™ solution, but in most
cases cannot guarantee optimality.

Methods of this kind are valuable for several reasons. First, computational experience with
(exact) algorithms has sometimes not been the best on certain types of problems. Many real-world
problems of interest are too large to be solved exactly. Secondly, enumerative algorithms invariably
benefit from beginning with a good feasible solution. Finally, a feasible solution can provide a
lower bound on the optimal objective function value. This bound can be used for fathoming in
enumerative algorithms and in cutting plane algorithms as a cut or as a source row for a cut [4].

Search techniques for discrete optimization include those developed by Healy in 1964 [17],
Reiter and Sherman in 1965 [18]. Reiter and Rice in 1966 [19]. Kreuzberger in 1970 [20], and
Kochenberger, McCarl, and Wyman in 1974 [21].

The Reiter and Sherman approach combines an intelligent search with a random search. It
starts with any point and then by using a suitably chosen local search technique, it moves to better
points until eventually no further improvement is possible. A set of local optima is generated. The
local optima are then sampled sequentially according to a plan (suitable probability distribution)
that stops when the expected return from further sampling is not sufficient to pay the cost of
further sampling. Reiter and Rice proposed a solution procedure consisting of (a) choosing a ran-
dom starting point, (b) locating a feasible point, and (c) applying a modified gradient maximizing
procedure.

Developments in direct search methods and developments in cutting methods and enumera-
tion techniques reached their high point in volume in the early 1970's. Recently though, progress
has been refocused on efficient approximation and direct search heuristic procedures for finding
feasible integer solutions for integer programming problems. These solutions are not necessarily
optimal, but usually will be better than can be found by simple rounding [22].

A new approach has been the combining (or hybridization) of two proven mathematical
programming techniques to solve integer programming problems. These two methods are dynamic
programming and some proven integer method such as branch-and-bound. The dynamic pro-
gramming methodology is used to search candidate hyperplanes efficiently for the optimal feasible
integer solution. Relaxations and fathoming criteria, which are fundamental to branch-and-bound,
are incorporated within the separation and initial fathoming provided by the dynamic programming

12

framework. This idea was explained and tested in the late 1970's by Cooper and Cooper [23] and
also by Marsten and Marin [24]. Their computational results for small to moderate size problems
showed promising results for the hybrid technique advocates.

Important to the development of the procedure proposed here are two heuristic approaches
known as greedy procedures and local improvement schemes. In a general sense, a “"greedy” proce-
dure is one in which the decision maker selects at each stage of the process an alternative that is
best among the feasible alternatives without regard to the impact the choice may have on subse-
quent decisions. The word “best™ implies the most favorable with respect to the objective function.
Strict greedy procedures have been applied to traveling salesman problems. minimal spanning tree
problems. and knapsack problems. The greedy algorithm does what is locally best without regard
to future consequence. Therefore, for most integer optimization problems, greedy algorithms as
they were designed are merely heuristics for finding a good feasible solution [1].

Local improvement schemes form the core of most continuous optimization procedures. The
search proceeds by sequential improvement of problem solutions, advancing at each step from a
current solution to an objective function superior neighbor. These are generally called local
improvement searches in the discrete optimization arena. These are also referred to as local
optimization or neighborhood searches. The concept of the neighborhood of a point x* in Euclidean
space is defined to be an open hypersphere containing x*. Because the variables are required to be
integer, different kinds of neighborhoods are needed. In general, every neighborhood of an integer
n-vector x* will be a set of integer vectors including x*, and in some sense near x*. The neighbor-
hood defined below is the most applicable to this discussion {4]. The unit neighborhood of x* is
defined as

R*) = {x|x; = xI, ;% x*+1} for j=12,..,n.

Local improvement schemes can sometimes be used as a second phase in an optimization procedure
that begins with the output of the greedy procedure [25].

Garfinkel and Nembhauser [4] suggest a local optima scheme that feeds from both the greedy
procedure and the local improvement or neighborhood search idea. However, just as stated above,
at each iteration only the best alternative is chosen and examined again. This feature and
sometimes pitfall of these procedures is discussed and improved upon in the proposed algorithm
presented in section III.

5. Nonlinear Problems

In view of the relative computational difficulties of algorithms for the solution of integer
linear programming problems, it is not surprising that the situation is, in general, even worse for
nonlinear integer programming (NLIP). While algorithms do exist for the solution of certain classes
of nonlinear integer programming problems, most have not been tested computationally and those
that have are effective only for relatively small-size problems.

13

Nonlinear problems that have separable objective functions and linear constraints have been
approached in many instances by dynamic programming techniques or implicit enumeration. The
value of a dynamic programming approach is that it yields a global optimum. The difficulty
associated with dynamic programming approaches is that multiple constrained problems lead to
multiple dimensional tables for the dynamic programming return functions, and this, by its nature,
leads to unwieldy storage and computational requirements [26]. Pegden and Petersen [27] present a
generalized implicit enumeration method for solving separable NLIP problems with linear con-
straints and report computational results. Their method uses a combination of search techniques and
linear programming approximation to gradually tighten bounds on the variables. The ordering of the
variables is an important part of their method. Cabot and Erenque [28] also present a branch-and-
bound method for solving the problem of minimizing a separable concave function over a convex
polyhedral set where the variables must be integer valued.

Another type of nonlinear integer problem that has received much attention has been a
problem with a quadratic objective function. It was first addressed by Balas [29] in 1969. He
presents an algorithm based on duality theory for both pure integer and the mixed integer case.
Balas also extends the algorithm further to include integer nonlinear problems with convex objec-
tive fuction and constraints. Other solution methods for quadratic integer programming methods
were developed later by McBride and Yormark [30] in 1980, and by Volkovich, Roshchin, and
Sergiendo [31] in 1986.

Most literature on nonlinear methods pointed to dynamic programming and branch-and-
bound methods, and to a lesser extent ideas from implicit enumeration and cutting plane tech-
niques. In any method, the difficulty of dealing with nonlinear problems grows even more acute
with an increase in problem size. Cooper [26] suggests that a new methodology is needed that
would be completely different in a theoretical sense.

6. Rounding Procedures

On the surface it seems possible to treat a problem of integer programming as one of
ordinary linear programming and to solve it by the standard simplex method. However, in order to
obtain an integer solution, we must either truncate or round off the solution obtained by the
simplex method. Sometimes this is adequate but, unfortunately, there are often pitfalls to this
approach. One is that the optimal linear programming solution is not necessarily feasible after it is
rounded. Another is the fact that there is no guarantee that this rounded solution will be the
optimal integer solution even if it passes the feasibility criterion. To illustrate this, the following
example is appropriate:

maximize Z = ﬂ.\'|..\'2) = X +5X2

subject tor x;+ 10x; < 20
X = 2

X;, x» = 0 and integer

14

The linear programming optimal solution is x; = 2, x; = 9/5, and Z = 11. If we round 9/5 to I,
then the resulting integer solution is x; = 2, x, = 1, which yields Z = 7. This is far from the
optimal integer solution of Z = 10 at x, = 0, x, = 2 [22].

Even though rounding has its pitfalls, it has still seen much attention for its applicability to
obtain a starting feasibile solution or as a method to obtain approximations to optimal solutions.
Early work was performed by Wagner, Giglio, and Galser in this area by applying rounding heuris-
tics to obtain an approximation to an optimal solution when dealing with preventive maintenance
scheduling [32]. Giglio and Wagner also explored the idea of rounding to integer values to
approximate solutions in machine scheduling problems [33]. In both cases, the computational
results of many examples were statistically analyzed in reference to the approximate solution’s
closeness to the optimal solution. With these approaches, the trade-off between decreased computa-
tion time (decreased by up to 15 percent) versus an “approximation” to an optimal solution would
have to be considered on a case-by-case basis. In certain applications, an approximate answer is
not good enough regardless of how much computer time is saved.

In 1980, the idea of rounding reemerged with an attempt by John Bartholdi to round to
integer values and obtain a solution to within a specified bound [34]. Bartholdi suggested that if
x.p 1s the optimal solution to the linear program, then the heuristically rounded solution is

o= [l [+l =l [y +o+a] =g+l 2] - (2)

where v, x>, X3,... are the solution variables for the continuous solution, and [x,] is the smallest
integer greater than or equal to x; (the rounded-up value). Bartholdi’s application of his method
was limited to 0-1 problems in cyclic scheduling and set covering type situations.

The simplest approach to rounding was put forth by Baum and Trotter [35] recently and
consists of rounding up in a minimization problem and rounding down in a maximization problem.
They concede that under constraints this procedure will not always give a feasible solution. This
was 1llustrated by the maximization example presented at the beginning of this discussion.

Taha sums up the limitations of utilizing rounding as follows:

I. If a feasible solution is obtained by rounding, one should not be under the illusion that
such a solution is optimal or even close to optimal. The rounding procedure at best may be
regarded as heuristic.

2. Any integer model having an original equality constraint can never yield a feasible

integer solution through rounding. This is based on the assumption that only basic variables can be
rounded, if necessary, and that all the nonbasic variables remain at zero level [3].

15

7. Applications

Since its inception in the 1950’s, integer programming has become the tool used by many
engineers and scientists to solve numerous real-world problems. As already mentioned, many
situations yield programming formulations with some or all of the variables required to be integer.
Included in these are scheduling, location, network, and selection problems, which appear in
industry, military, education, health, and other environments. Specific examples include problems
of facility location, resource-task scheduling, traveling salesman, capital budgeting. knapsack (cargo
loading). and production-storage-distribution [16].

Specific applications of integer programming to every-day industrial problems are also far
reaching. Integer programming techniques have been used to solve everything from electrical power
system design/expansion [36-39] to the problem of determining measurements of a given number
of sizes of apparel so as to maximize expected sales or minimize an index of aggregate discomfort
[40]. Integer programming has been used extensively in the investment portfolio selection arena to
optimize returns of stock option strategies [41,42]. It has also been used in determining a city’s
optimal bus crew scheduling [43] and a power company’s optimal generator maintenance schedule
[44].

C. Hooke and Jeeves Direct Search
1. Theory

Conceptually, the simplest type of search method is one that changes one variable at a time
while keeping all the others constant until the minimum or maximum is reached. For example, one
method would be to set one of the variables, say x,, constant and vary x» until a maximum or -
minimum was obtained. Then, keeping a new value of x, constant, change x, until an optimum for
the value of x, is achieved, and so on. The direct search method of Robert Hooke and T. A.
Jeeves is just such a univariate sequential technique of which each step consists of two kinds of
moves. The technique alternates sequences of local univariate exploratory moves with extrapolations
(or pattern moves. as Hooke and Jeeves refer to them) [45]. The basis for the method is the intui-
tive presumption that a strategy that was successful in the past will be successful in the future.

The development of the algorithm assumes the following:

Minimize: fx) x e E”

where x = (X;.X5,...,x;), E" represents n-dimensional Euclidean space, and fix) can be either linear
or nonlinear in nature. Its procedure is illustrated with a flow diagram in figure 6. The algorithm
operates in the following manner:

Initial values for all the elements of x must be provided as well as an initial incremental

change €. To initiate an exploratory search, f(x) is evaluated at a base point (the base point is the
vector of initial guesses of the independent variables for the first cycle). Then each variable is

16

”

START

1y

Evaluate f (x) at the
base point (x * initially)
2 v

Carry out type I exploratory search from
> base point. After last perturbations, is f (x) <

less than f (x (b)) at old base point ?
[Yes

No | +
6 I 3’ Set new base point

tx®)y=r)

Is perturbation size (€,) less than 4 *
some prescribed small number? Carry out pattern search
Y
Nol | Yo el | s ¥
7 Carry out type II exploratory
Reduce perturbation parameter search. After last perturbation

£(x) less than £ (x®) in(3)?
Yes ! No |

Figure 6. Information flow diagram for direct minimization using Hooke and Jeeves pattern search.

changed in rotation, one at a time, by incremental amounts, until all the parameters have been so
changed. To be specific, x,'”’ is changed by an amount +¢€,, so that v;'" = ;' +¢,. If flx) is
reduced (minimization), x,'"’ + €, is adopted as the new element in x. If the increment fails to
improve the objective function, x,'" is changed by —e€,, and the value of f{(x) is again checked as
before. If the value of f(x) is not improved by either x,'” +€,, x,'” is left unchanged. Then v»'" is
changed by an amount €>. and so forth. until all the independent variables have been changed to
complete one exploratory search. For each step or move in the independent variable, the value of
the objective function is compared with the value at the previous point. If the objective function is
improved for the given step. then the new value of the objective function replaces the old one in

the testing. However, if a perturbation is a failure, then the old value of flx) is retained.

After making one (or more) exploratory searches in this fashion, a “pattern search™ is made.
The successfully changed variables (i.e., those varible changes that decreased f(x)) define a vector
in £ (n-dimensional Euclidean space) that represents a successful direction for minimization. A
series of accelerating steps, or pattern searches, is made along this vector as long as f(x) is
decreased by each pattern search. The magnitude of the step for the pattern search in each coor-
dinate direction is roughly proportional to the number of successful steps previously encountered in
each coordinate direction during the exploratory searches for several previous cycles. Therefore, the
pattern moves increase in length as long as the search proceeds in the same direction. Furthermore,
the exploratory sequences become increasingly farther apart as long as the search proceeds in the
same direction. Exploratory moves and pattern moves are illustrated graphically in figure 7. An

17

Pattern search

Yl

Exploratory search along
the coordinate axes

X1

Figure 7. Hooke and Jeeves exploratory and pattern moves [46].

exploratory search conducted after a pattern search is termed a type II exploratory search, and the
success or failure of a pattern move is not established until after the type Il exploratory search has
been completed.

If fix) is not decreased after the type II exploratory ‘search, the pattern search is said to fail,
and a new type | exploratory search is made in order to define a new successful direction. If the
type 1 exploratory search fails to give a new successful direction, €, is reduced gradually, until
either a new successful direction can be defined or each €, becomes smaller than some preset toler-
ance. Failure to decrease fix) for a very small ¢; indicates that a local optimum has been reached.
Three basic tests must be satisfied for the sequence of searches to terminate. The first test occurs
after each exploratory search and pattern search—the change in the objective function is compared
with a prespecified small number. If the value of the objective function did not vary by an amount
more than the specified number from the previous base value of the objective function, the explora-
tory search or pattern search is considered a failure. In the absence of such a failure, a second test
is made to determine if the objective function was increased (a failure) or decreased (a successful
search). This second test ensures that the value of the objective function is always being improved.
The third test is conducted after an exploratory search failure on the fractional change in €. The
search can terminate if the change in each variable is less than some prespecified number.

2. Hooke and Jeeves Example

The following is a nonlinear maximization example that illustrates the Hooke and Jeeves
method:

maximize Z = flx,.x) = 1/ ((x;+ 17 +x7%)

¥ =(2,28 g = (060,084 fx®) = 0.05938

18

.l

Type I Exploratory Search

Variable €;
x; = 2.00+0.60 = 2.60 f12.6, 2.8) = 0.048 failure
Xy = 2.00-0.60 = 1.40 f(1.4, 2.8) = 0.073 success
X, = 2.80+0.84 = 3.64 f(l1.4, 3.64) = 0.052 failure
xno= 2.804+0.84 = 1.96 fil.4, 1.96) = 0.104 success

D = (1.4, 1.96)

Type I was a success. Therefore, new base point = (1.4, 1.96).

A — Pattern Search is made from (1.4, 1.96) according to

R = 2 B

(h) o}

where x,” is the old base x vector, which is now x'

I
v
]

2(1.4,1.96) — (2, 2.8)

(0.80, 1.12)

-
Il

f10.80, 1.12) = 0.22

Now a type Il exploratory search is made, with success or failure based on comparison to
f0.8, 1.12) — 0.22.

Variable €;
x; = 0.80+0.60 = 1.40 f(1.40, 1.12) = 0.14 failure
Xy = 0.80-0.60 = 0.20 f(0.20, 1.12) = 0.38 success
v, = 1.12+0.84 = .96 f(0.20, 1.96) = 0.19 failure
v, = 1.12-0.84 = 0.28 £0.20, 0.28) = 0.67 success

¥ = (0.20,0.28)

To determine if the pattern search A was a success, f0.20,0.28) is compared to f(1.4,1.96),
i.e.. 0.67: 0.104. Therefore, the pattern search was a success and the new base point is

A= (0.20,0.28)— f10.20,0.28) = 0.67

and the old base point is now

W= (1.4.1.96) — f(1.4,1.96) = 0.104 .

B —> Since success has occurred. we proceed with another pattern search.
x(4) — 2X(3)—X“)
¥ = 2(0.20,0.28) — (1.4.1.96)
M =(-1.-14) fi—1,—1.4) = 0.5l

A type Il exploratory search is now performed on this new point to determine if the pattern move
was successful.

Variable €;
= —1406 = —0.40 fi—0.4,-1.4) = 0.43 failure
x=-1-06 = —-16 fi—1.6,—1.4) = 0.43 failure
»= —144+084 = —0.56 f—1,-0.56) = 3.18 success

= (=1,-0.56)

To determine if the pattern search B was a success, fl—1,—0.56) = 3.18 is compared to
0.20.0.28) = 0.67. Therefore, the pattern search is a success as 3.18 > 0.67 and the new base

point is

W9 = (—1,-0.56) — fi—1,-0.56) = 3.18

and the old base point is

20

A

ﬂ\

A= (0.20.0.28) — £0.20.0.28) = 0.67

C — Since success has occurred, we proceed with another pattern search.

s 3
.\,(01 — 2(.\.(.))__\.(,i

A= 2(—=1.-0.56)—(0.20.0.28)

A= (=220 14) — fi-22.-1.4) = 0.29

A type Il exploratory search is now performed on this new point to determine if the pattern move
Was a4 SUCCess.

Variable €
Xy = —2204+060 = —1.60 — fl—1.6,—1.40) = 0.43 success
= —-140+084 = —0.56 — fl—1.6.—0.56) = 1.49 success

W= (—1.6.-0.56)

To determine if pattern search C was a success. fl—1.6,—0.56) = 1.49 is compared to >
(current base point) = (—1.-0.56) —> fix*™") = 3.18. Therefore 1.49 < 3.18, and the pattern
search was a failure. Consequently we would go back to 7 = (—1,—0.56) and again initiate a
type | search. The restart occurred due to the failure of the pattern search even though there were
successes in the x'7' type Il search. When the stage is reached in which neither the type I explora-
tory search nor the pattern search (together with a type Il search) has a success in any coordinate
direction. both are said to fail and the perturbation €, is reduced, Bazaraa and Shetty suggest by a
factor of 0.5 [46]. Therefore. a new €, would be (0.60/2,0.84/2) which is equal to (0.30.0.42). In
this example the optimal solution ultimately converges to x; = — 1, x> = 0, and flv) — =,

3. Improvements, Advantages, and Disadvantages

Two suggestions from Gottfried and Weisman [47] that can improve the algorithm are as
follows:

1. The algorithm can be speeded up by “remembering” the direction of improvement for
each v; in the previous exploratory sequence and then applying the same strategy during current

exploration. For example. if the function shows improvement by decreasing given y; to x; — €,
then the next exploratory move should first decrease x; to x; — €; and then increase x, to x; + €,
only if the move to x, — € was not a success.

21

2. Improvement also can be obtained if one varies the magnitude of each €; separately,
depending on the history of successes or failures with respect to the exploratory moves in each
direction.

The algorithm's main feature consists of following “ridges” and “valleys.” The pattern move
can take long steps in the assumed direction of valleys, and the exploratory moves find the way
back to these valleys if a pattern move has climbed out of them. Although the method lacks
mathematical elegance, it is a highly efficient optimization procedure. It is easily programmed and,
as mentioned earlier, is particularly well suited to functions that exhibit a straight, sharp ridge or
valley.

Before one regards this method as the ultimate in direct search techniques, it should be
noted there is a shortcoming. The method may sometime fail to produce any further improvement
in a function that contains tightly curved ridges or sharp-cornered contours while still far from a
maximum or minimum [48].

lIl. PROPOSED ALGORITHM - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE
FOR INTEGER PROGRAMMING (IESIP)

A. Approach
1. General

By using the best features of the greedy procedure, neighborhood search, and the Hooke
and Jeeves type | and type Il exploratory searches. coupled with modifications and efficient round-
ing procedures. one can develop an improved algorithm that will often prove superior to the
established branch-and-bound procedure. This new procedure will be described along with a flow
diagram showing the steps involved in the solution process. Also described are the necessary
modifications to existing procedures that make this new algorithm an improvement over others.
Section B will describe some of the more intricate details of the procedure such as the rounding
procedure and stopping rule.

2. Solution Procedure and Modifications Required to Existing Schemes

The TESIP procedure begins, just as does the fractional-cut and branch-and-bound methods,
with a continuous optimal solution obtained from simplex (linear) problems. Next, the continuous
solution is rounded to an integer value according to the procedure detailed in section B.1. Once the
rounded integer solution is obtained and shown to be within the constraint limitations, the next step
employs some of the ideas of both the Hooke and Jeeves procedure for nonlinear problems and the
greedy procedure discussed earlier.

The IESIP algorithm begins by utilizing an idea borrowed from the Hooke and Jeeves
procedure. The first step involved in the Hooke and Jeeves procedure is a univariate exploratory
search around the starting point.

22

MH

”

X2 5
3
2eo— ® ¢~
\ —
e
//
le & —— —
ON
\
1@
/
/
o &- - >
0} 1 2 3 X1

Figure 8. Hooke and Jeeves exploratory search progression.

Each time the value of the objective function increases (maximization problem) using this
procedure, one keeps the value of the changed variable and moves on to the next variable, increas-
ing it and then decreasing it to check for additional improvement. This results in the movement as
shown in figure 8 for a two-variable problem. This idea works well with continuous type problems.
but in the case of integer problems, this technique will tend to “miss™ the optimal solution. This is
especially apparent in the cases where the optimal integer solution is not as close to the continuous
solution as one would expect. The following example shows the dilemma created on a two-variable
problem where the Hooke and Jeeves exploratory search is applied directly to the problem without
modifications: .

maximize Z = fx,.x5) = v +5%
subject to: x;+ 10x; = 20
=2

X4 = 0 and integer

In applying the Hooke and Jeeves procedure a €; is needed to increment the variables in a
univariate manner. Since this is an integer problem, the logical value for ¢; is an integer value of
‘one or two if one starts with all integers in the solution. This is accomplished by first rounding the
continuous solution of f2.0,1.8) = 11 to f(1.0,1.0) = 6. The details of the rounding scheme
employed and the justification for rounding to (1.0.1.0) rather than (2.0,1.0) is discussed later in
section B.1. Type | exploratory search yields

23

Variable €,

x =1+1=2 f2,1) = T (success)
x»=1+1=2 f(2,2) = constraint failure
n=1-1=0 £2,0) = 2 (failure)

Therefore, the new base point is (2,1).

Pattern Search Fails

Type 1 search is performed again from (2,1). It also fails; therefore, with strict application,
we reach a false optimum of f(2,1) = 7, instead of f(0,2) = 10, the actual integer optimum. Note
that the x, value of 2 is kept once it meets successes at a value of 7, thereby not allowing the true
solution to emerge as (0,2).

In order to overcome this problem, we must modify the exploratory search so that it does
not rule out certain increasing (maximization) directions. This is accomplished by taking an idea
from the greedy procedure and modifying it. Instead of selecting just the best alternative in our
type I exploratory search, we will first change the € value from a continuous value to an integer
value of one. We then univariately examine the neighborhood around the rounded feasible solution
to determine all feasible candidate integer solutions. Using the same example as shown above, this
gives exploratory search results as shown below and in figure 9.

Variable €;
n=1+1=2 f2,1) = 7 (feasible)
n=1-1=20 f0,1) = 5 (feasible)
x»=1+1 =2 f(1,2) = constraint failure

1

Hn=1-1=0 f(1,0) 1 (feasible)

This then allows for type II exploration of each of these candidate feasible points. The type
11 exploration is similar to the type I in its univariate nature, but after examining all the feasible
solutions from the type I search, only the best (largest objective function value for a maximization
problem) is chosen to be examined further. In other words, each neighborhood of each feasible
region is examined and only the best of all solutions from all neighborhoods is chosen to be
examined further.

Each time a variable is incremented or decremented, the solution must be evaluated against

the set of constraints. If one constraint fails, that variable is perturbated by a value of 17 in the
other direction or the algorithm moves on to the next variable, if both directions have been

24

«

XZp

3 X =Infeasible Point
@=Fecsxble Point

g

'O——-0-———0

!
|
A o
: Y ‘2 3 X

Figure 9. Modified type I exploratory search.

examined. This modification to the Hooke and Jeeves type I search was necessary to accommodate
integer programming problems which are by their nature constrained. The Hooke and Jeeves proce-
dure was originally designed for use on nonlinear unconstrained problems.

Another modification pertains to the order involved in incrementing and decrementing the
variable. For maximization problems, the algorithm will first increment the variable by 1™ and
check the constraints, then it will decrement the variable by *1,” check constraints, and move on
to the next variable. For minimization problems. the algorithm will first decrement the variable by
*“1" and check constraints, then increment the variable by *1,” check the constraints, and move on
to the next variable.

This order involved in checking variables is important for the following reason: if all the
variables in the objective function have positive coefficients, then the value obtained by the +1
increment with maximization or — 1 decrement in minimization, will always be better than the
succeeding — 1 and + 1 changes, respectively. Therefore, if the problem has all positive objective
function coefficients, then the algorithm proceeds on to the next variable without checking the
second increment (+ min, — max) if the first incrementation was successful. This computation
saving scheme, of course, is only valid if used for type II searches. Type I searches identify all
feasible candidates, both those obtained from + 1 and — | operations, disregarding the coefficients
of the objective function. This computation saving feature can potentially save a tremendous
amount of time, especially if applied to problems containing many variables.

Once the best solution has been obtained from all the feasible neighborhoods, a type Il
search is applied. Each time, the best solution is picked from this type II search and searched for

25

further improvement. This is continued until the “best™ solution from a type I1 search is the same
as the solution which initiated that particular search. At this point all the other feasible points on
this neighborhood search are also examined. If their examination reveals a point that shows
improvement over their respective feasible points, then it is examined by a type II search also. If
not, then the algorithm terminates with the optimal solution being the current best value.

The following definitions, procedure outline, and flow diagram (fig. 10) describe the basic
steps involved in the improved exploratory search technique:

Definitions
Type 1 Exploratory Search: This utilizes the best features of the greedy procedure and
the Hooke and Jeeves type 1 exploratory search by combining them into one search scheme. This

search produces a list of feasible solutions from the initial rounded integer point.

Type II Exploratory Search: This is similar to the type I search except that only the best
solution is kept for further searching rather than all feasible points.

Parent Point: This defines a best point in a search, that if chosen to be examined will
generate a sequence which returns to the present point. In other words, it is a ““parent” to the

current search and will only loop back on itself.

Seed Point: This defines the point that is currently being searched or explored.

Solution Steps for IESIP

Step 1: Round the optimal continuous solution to a feasible integer solution. Verify that
the solution meets constaints: if it does not, then the term with the highest coefficient in the failed
constraint is reduced by a value of one (maximization).

Step 2: Initiate the type I exploratory search to determine all feasible candidates for further
examination.

Step 3: Initiate type II exploratory search of each feasible point found in step 2.

Step 4: Take the best solution(s) of all these searches and initiate another type Il explora-
tory search on this point or points.

Step 5: Taking the best solution obtained in this search, check to see if it (they) is (are) a
“parent” point(s). If not, go back to step 4. If yes, then proceed to step 6.

Step 6: Check to see if this is the first occurrence of a parent point; if it is, then go to
step 7. If it is not, then choose the largest (maximization problem) nonparent point value that is an
improvement over its respective seed point (the first seed point being the rounded continuous
optimal). If there arc none, then stop—the best point so far is optimal.

26

Step 7. Perform a type II search on all remaining feasible nonparent points. If any of

these results is an improvement over its respective feasible points and is not a parent point, then go

back to step 4. If there are none, then stop—the best point so far is optimal.
Note:

In step 6, if there are multiple parent occurrences in multiple searches, then only the
feasible nonparent solutions from the searches that contain a parent point are examined.

CONTINUOUS OPTIMAL
FROM SIMPLEX

:

APPLY ROUNDING PROCEDURE

CHENNDT SATISFIED
ONSTRAINT

SATISFIED

MODIFY ROUNDED VALUE
ACCORDING TO RULE

APPLY UNIVARITE |
TYPE I EXPLORATORY SEARCH

v

TYPE II EXPLORATORY SEARCH
ON ALL FEASIBLE SOLUTIONS

!

TAKE BEST OF ALL SOLUTIONS
OBTAINED IN TYPE II SEARCHES

APPLY TYPE II SEARCH TO
THIS BEST SOLUTION POINT

PERFORM TYPE II SEARCH
AND PICK THE BEST VALUE ON REMAINING FEASIBLE
SOLUTIONS
IS THIS YES
A PARENT

POINT?

A

SOLUTIONS SHOW
IMPROVEMENT OVER
THEIR RESPECTIVE
SEED POINTS?

OF THESE FIND THE
LARGEST NON-PARENT

POINT é]

Figure 10. IESIP descriptive flow diagram.

27

3. Advantages in Using the Proposed Algorithm

The most significant advantage of this procedure over other integer programming techniques
is that it primarily involves adding and subtracting *'1” from the elements of an n-dimensional vec-
tor. The only other arithmetic operation that is necessary is multiplying the candidate solution
vectors by the respective coefficients in the constraints and objective function.

Adding to this procedure’s list of advantages is its lack of having to solve simplex itera-
tions. When using a fractional-cut or branch-and-bound technique. one has to solve a new simplex
problem each time a new constraint is added to the tableau. From a computational complexity
standpoint, an iteration of dual simplex with four or five variables and four or five constraints is a
laborious nightmare. This procedure eliminates that task completely.

Another advantage of this procedure is that it employs the better aspects of a proven non-
linear optimization technique (Hooke and Jeeves) and a well-established heuristic procedure
(greedy). It is further improved by the fact that the type I search avoids the greedy procedure
pitfall of taking only the one best solution in a search. The following example shows how if a
greedy procedure were applied in place of the modified type I exploratory search, then the resulting
solution would not be optimal:

maximize Z = fly;.x) = 4,000x, +7,000x,

subject to: 1,200x, +2,000x> =< 6,000

25.000x, + 80,000x, = 200,000

xX;.¥> = 0 and integer

Rounded Solution — A1, 1) = 11,000

Type I exploratory search on (1.1) yields

Variable €;
Xy =1+1=2 fi2.1) = 15,000 (feasible)
=1-1=0 £0,1) = 7,000 (feasible)
»=1+1=2 Al.2) = 18,000 (feasible)
N =1-1=0 fi1.0) = 4,000 (feasible)

Therefore. the feasible candidate solutions are (2.1). (0,1). (1.2), and (1.0). If we applied an
unmodified greedy procedure. we would pick f(1.2) = 18.000 and examine it further. This would

give the following:

28

.

Variable €,

vy =1+1=2 fi2.2) = fails constraint
yvw=1-1=0 £0.2) = 14.000 (feasible)
=241 =3 ft1.3) = fails constraint
Yh=2-1 =1 fil.hy = 11,000 (feasible)

Choosing the best solution yields f0.2) = 14,000. Examining the point (0.2). we have

Variable €,
= 0+1 =1 fi1.2) = 18.000 (feasible)
=241 =3 f10.3) = fails constraint
=21 =1 fi0.1) = 7.000 (feasible)
The largest value is f(1.2) = 18.000. but this is the first parent point (i.e.. if chosen it will

generate a sequence which returns to the present point). Therefore. our rule says to examine all
other nonparent point feasible solutions of this search. The point fi0.1) = 7.000 is the only
remaining point: therefore. it is examined.

Variable €,
vy =0+ =1 Sty = 11.000 (feasible)
o= 1+1 =2 f10.2) = 14.000 (feasible)
vw=1I1-1=20 £10.0) = 0 (feasible)

Both (1.1) and (0.2) are parent points and f{0.0) = 0 is not an improvement over 7.000: theretore,
we would conclude the procedure at this point with a solution of f{1.2) = 18.000 (best so ftar).
This 1s not optimal. If" we apply the type I exploratory search as described. we then would examine
all three feasible candidates. An examination of the feasible point (2.1) gives a best solution of
fi3.1) = 19.000. and after two more type II explorations. this point is improved again to an
optimal of A5.0) = 20.000. This example is shown in more detail in the next part of this section.

B. Other Details of the Algorithm
1. Rounding to Discrete Starting Solution

Considering the difficulties encountered with rounding continuous optimal solutions to
integer values, this procedure will utilize the simple approach as discussed in section Il by Baum
and Trotter [35]. A rounded integer value is required of this algorithm since all of its subsequent
steps require integer values and manipulations. Wismer and Chattergy in their discussion of round-
ing suggest that rounding is especially applicable when the optimal solution will be insensitive to a
change of plus or minus one, e.g.. when the solution is a large number [49]. This algorithm uses
the idea of Baum and Trotter and extends it to cases where constraints are involved.

29

The rounding step of the algorithm proceeds in the following manner: first, in a maximiza-
tion problem. the continuous optimal solution will be rounded down to the next lowest integer
values. If a value is already an integer, it will be rounded down by an increment of one to the
next lower integer value (e.g.. (6.3.4) would be rounded down to (5,3)). In some of the test
problems false optima were encountered when the integer values in continuous solutions were not
reduced (or raised) to the next lower (or higher) increment of “1.” Secondly. a constraint check is
performed to verify that the rounded value falls within the constraints. If a rounded point fails a
constraint, then the entry with the highest coefficient in the failed constraint is lowered by a value
of 1. The procedure follows the same line of reasoning when dealing with a minimization problem
except that the rounding will be up instead of down and the variable will be raised by “1" on a
constraint failure rather than lowered.

This approach works well with maximization problems containing positive decision variables
and "<" type constaints. or on minimization problems with "=" type constraints. Problems not in
these forms will sometimes require extra effort in coming up with a rounded starting solution. The
computer program presented at the end of this section will allow the user to round the continuous
optimal solution independent of the program if so desired.

“Equal to™ constraints are a problem for rounding in that they require a unique solution to
even feasibly start the procedure. The problems of “equal to™ constraints will be examined in sec-
tion V when discussing restrictions of the algorithm.

2. Constraint involvement

Integer programming problems. by their very nature, involve constraints or restrictions on
their solutions. The Hooke and Jeeves exploratory search was designed for unconstrained problems:
therefore, a step had to be included in TESIP for verifying that the candidate solution meets the
constraints. Some of these problems are easy to check, but others are more laborious. For instance.
when exploring around the point ~0,” and by using a value of — 1, we automatically trigger a con-
straint failure since this violates the non-negativity requirement found in almost all integer pro-
gramming problems. However, for other points, the algorithm must accommodate a left-hand-side
constraint value calculation at the check point with a comparison to the respective right-hand-side.
If it passes the constraint requirement, the algorithm moves on to the next constraint. If at any
time the constraint check fails, then the candidate solution at those points is said to fail. These
constraint checks are conducted after every univariate search step performed on a variable and dur-
ing the rounding procedure. Therefore, with this in mind, it is easy to see that the computational
complexity and time required to utilize this algorithm is going to largely depend on the number of
constraints involved in a particular problem.

3. Stopping Rule

The algorithm stops when the only points produced from a search are parent points together
with points that are constraint failure points or points that show no improvement over the current '
seed value. The key to determining when this occurs is the recognition and storage of the “parent”
points that have been previously examined, and knowledge of the origin of the present point being
examined (i.e., did it come from one of the parent points?).

30

-~

”

In the example presented in section C, the following initial rounded solution will give the
associated feasible points after a type I exploratory search:

Initial — f(1.1) 11,000
fi2.1) 15,000 (feasible)
f10.1) = 7,000 (feasible)
fil.2) 18.000 (feasible)
fi1.,0) 4,000 (feasible)

il

After examining these feasible points with a type II search, the best solution came from examining
(2,1) and was (3.1) with an objective function value of 19,000. Therefore, we say that (2,1) was

the parent point for the current best solution of (3.1). Going further, we find that if the neighbor-

hood around (3.1) is examined, it reveals the following:

fi4.1) = constraint failure
fi2.1) = 15,000 (feasible)
f(3.2) = constraint failure
f13.0) = 12,000 (feasible)

The point (2.1) is the best solution from this search, but it is recognized as the parent to
the current search and is therefore not examined. Examination of this point would generate a
sequence which returns to the present point. This is called by the procedure the “first criterion for
stopping.™

Also shown as a feasible point is the point {3.0) = 12.000. The procedure therefore
examines the neighborhood around this point for improvement over it. If there had been other feas-
ible points besides (3.0), they would also have been examined.

Searching f13.0) = 12,000 yields

Variable €;
=341 =4 f(4,0) = 16,000 (feasible)
x> = 0+1 =1 f(3.1) = 19,000 (feasible)
»w=0-1= -1 A3, + 1) = constraint failure

If the procedure is fortunate and there are no other feasible points other than the “‘parent-
loop™ point, then the algorithm ends here with the current best solution as the answer. Therefore,
in the example above f(4.0) = 16.000 is examined (since fi3.1) = 19.000 is a parent point)
revealing the following:

Variable € f1i4.0) = 16,000
Xy =441 =15 f15,0) = 20,000 (feasible)
Xo = 0+1 = | fid. 1) = constraint failure
X =0-1= —1 ftd,— 1) = constraint failure

31

This allows us to pursue the point (5,0) since it is the best value and not a parent-loop point.
Upon examining (5,0), we find the following:

Variable €i f(5.0) = 20,000
Xy =5+1 =6 f(6.0) = constraint failure
Xy =5-1=4 £fi4,0) = 16,000
x»=0+1 =1 fi5.1) = constraint failure
x»=0-1= -1 f(§,—1) = constraint failure

Since (4.0) is the only feasible point and it is the parent point for the current search, the algorithm
has no other feasible points to examine and therefore stops. It should also be noted that more than
one parent point could be found in a search and would also not need to be reexamined.

In summary. the stopping rule consists of the following two criteria:

|. The best solutions from a search are parents to the current search and will therefore
result in a loop-back on themselves if examined.

2. If criterion (1) is met and there are no other feasible points in that search that are
improvements over their current seed point, then the procedure stops. The current best solution is
chosen as the optimal.

C. Example Problems

The following example is presented in detail to illustrate the procedure. It is a particularly
interesting problem in that it is one of the class of problems where the optimal integer solution
(5,0) is relatively far removed from its optimal continuous solution of (1.739,1.956). The example
is taken from Claycombe and Sullivan [50]. The first part of the example solves the problem using
the IESIP procedure. Following the solution is a graphic representation of the solution process
showing its progress from rounded initial interger solution to the final optimal value. Another
example with four variables is also provided after the graphic.

Two Variable Example

An excursion company is considering adding small boats to its fleet. The company has
$200,000 to invest in this venture. At present, there is an estimated maximum demand of 6,000
customers per season for these tours. The company does not wish to provide capacity in excess of
the esimated maximum demand. The basic data are given below for the two types of available
boats. The company will make an estimated seasonal profit of $4,000 for each boat of type A and
$7.000 for each boat of type B. How many boats of each type should it purchase?

Type A Type B

Capacity (customers/season) 1,200 2,000
Initial Cost ($/boat) 25,000 80,000

32

ﬂ |

This translates into the following integer linear programming problem:
maximize Z = flx;.x,) = 4,000x, +7,000x;

subject to: 1,200x, +2,000x, < 6,000
25,000x, + 80,000x; = 200,000
vp.vs = 0 and integer .
Step 1: The continuous optimal solution is given as (1.739,1.956) which gives a value of
$20.,648 to the objective function. Applying the rounding rules to this value, we have a rounded
solution of (1,1) = $11,000. We then check this rounded value against the constraints and find it

to be feasible.

Step 2: Perform a type | exploratory search around the rounded initial solution. After each
increment or decrement of a variable, the constraints are checked to verify feasibility.

Variable €l A1y = 11,000
xp=1+1 =2 f(2,1) = 15,000 (feasible)
ny=1-1r=20 f0,1) = 7,000 (feasible)
X = 1+1 =2 fi1,2) = 18,000 (feasible)
n=1-1=20 f11,0) = 4,000 (feasible) .

All points are feasible; therefore, the next step is to proceed on to the type Il examination of each
of the neighborhoods around these feasible points.

Step 3: Examine the neighborhoods around each of the feasible points with a type Il
exploratory search. After each increment or decrement of a variable, the constraints are checked to
verify feasibility.

Variable €; 2,1y = 15,000
xp =241 =23 f3,1) = 19,000 (feasible)*
X2 = 1+1 =2 fi2,2) = constraint failure
n=1-1=90 f(2,0) = 8,000 (feasible)
Variable €; 0,1y = 7,000
xp = 0+1 =1 S, 1y = 11,000 (feasible)
x; = 1+1 =2 f0,2) = 14,000 (feasible)

33

Variable €; fi1,2) = 18,000

3 =1+1 =2 f(2,2) = constraint failure

x=1-1=20 f0,2) = 14,000 (feasible)

X =241 =3 f(1,3) = constraint failure

X =2-1 =1 S(1,1) = 11,000 (feasible)
Variable €; f(1,0) = 4,000

x=1+1 =2 A(2,0) = 8,000 (feasible)

x=0+1 =1 AL, 1) = 11,000 (feasible) .

Step 4: Take the best solution point found in step 3 (*) and initiate a type II exploratory
search on this point.

Variable € f(3,1) = 19,000
=341 =4 fi4,1) = constraint failure
x; =3-1=2 f(2,1) = 15,000 (feasible)
X =1+1 =2 f(3,2) = constraint failure
xn»=1-1=20 f(3,0) = 12,000 (feasible) .

Step 5: Check to see if the best solution obtained in step 4 is the same as the solution
which initiated that search (parent point). If not, proceed to step 4 again. If yes, go to step 6.

Step 6: In this case, (2,1) is the parent point and the first occurrence of such a point.
Therefore, the remaining feasible point is only f(3,0) = 12,000.

Variable € f(3,0) = 12,000
xy, =3+1=4 f4,0) = 16,000 (feasible)
y =3-1=2 f(2,0) = 8,000 (feasible)
xn» =0+1 =1 f(3,1) = 19,000 (feasible)
n =0-1= -1 f(3,— 1) = constraint failure .

Step 7. Perform type II search on each of the other feasible points. If any of these results
is an improvement over its respective feasible points and is not a parent point, go back to step 4.
If there is none, then stop—the current best is the solution. The best point is (3,1), is a parent
point, and should not be examined.

In this case, the point (4,0) is the next best point and an improvement over- 12,000, and it
is also not a parent point. Therefore, step 4 is performed again on the new point (4,0).

Variable € fi4,0) = 16,000
x; =4+1 =5 A5,0) = 20,000 (feasible)
x; = 0+1 =1 f(4,1) = constraint failure
x =0-1= —1 fid,— 1) = constraint failure .

34

”

m!

Best point is {5,0) = 20,000 and not a parent point. Step 4 is invoked again.

Variable € f(5,0) = 20,000
xp=5+1 =6 £6,0) = constraint failure
xp=5-1=4 f(4,0) = 16,000 (feasible)
xn =0+1 =1 f5,1) = constraint failure
x=0-1= -1 f(5,—1) = constraint failure .

(4,0) is the best and only feasible point at this search. According to step 6, since this is a parent
point and there are no other improving feasible points from this search, the solution is the best one
so far; that is, f{5,0) = 20,000. This example is shown graphically in figure 1.
Four Variable Example
maximize Z = fix),x2,xX3,X3) = 4x;+5x2+9x3+ 5x4
subject to: x;+3x;+9%x3+6x4 < 16
6.\’, +6x2+7.r4 = 19
7X| + SX'_) +]8X3 + 3.\'4 = 44

X1,%2,%3,%3 = 0 and integer .
1532 4

d Continuous Optimal Solution = £(2.8652,0,1.2871,0.2584) = 24.337.

Step 1: Rounded feasible starting point = f(2,0,1,0) = 17

Step 2.

Variable €; f(2,0,1,0) = 17
xy, =2+1 =3 f(3,0,1,0) = 21l (feasible)
Xy =2—-1=1 f(1,0,1,0) = 13 (feasible)
X =041 =1 f2,1,1,0) = 22 (feasible)
n=0-1=-1 f(2,-1,1,0) = constraint failure
X3 = 1+1 =2 f(2,0,2,0) = constraint failure
x3=1-1=20 f(2,0,0,0) = 8 (feasible)
x =0+1 =1 f2,0,1,1) = constraint failure
X3 =0-1=-1 f(2,0,1,~1) = constraint failure.

Four feasible f)oints are now examined by step 3.

35

‘wapqoad ajdwexa sqeurea-om], || andi{
IN3HYd
X _ L 9 wmems/s Oy € 2 1
< od———— lllldA.ll.llo = .- *
(1Iv4 | A _7 \M/
| _
\hzwf _ _
| o
——e e @ e g — - — — > @
(1Y) _ < _ ouoz:omv 1
| | H3931NI
|
12

SNONNILNOD

NOILNTI0S "WWILdO 0L HIVd == = = e =

H1¥d HOYY3IS AHOIVHOIdXd — — — —-—
SINIOd J19ISP3d Y303INL e
S3HUNTTIVY INIPHLISNOD ©

V 2x

36

Step 3:

Variable

Xy
Xy
R%)
RE}
X3
X3
X3
X4

It

Variable

€

3+1 =

3—1
0O+1
0-1
I+1
-1
0+1
0-1

Il

= 141 =

It

Il

"

=1
0+1
0-1
1 +1
1—1
0+1

=0-1

Variable

Xy
Xy
RG]
RG)
X3
X3
X4
R¥

—_N

—_— O N

janiil 8

-1

—_ o N

= -

=241 =

i

Variable

Xy
X
X2
X>
X3
X3
X4
X3

i

2—1
1+ 1
=1
1+1
-1
0O+1
0-1

2+1
2—1
0+1
0-1
0+1
0-1
0+ 1

=0-1

I

—_ O NO N — W

=

£3,0,1,0) = 21

f14,0,1,0) = constraint failure
f2,0,1,0) 17 (feasible)

f(3,1,1,0) = constraint failure
f(3,-1,1,0) = constraint failure
f13,0,2,0) constraint failure
£(3,0,0,0) = 12 (feasible)

fA3,0,1,1) = constraint failure

f13,0,1,—1) = constraint failure .

f11,0,1,0) = 13

f12,0,1,0) = 17 (feasible)
f(0,0,1,0) 9 (feasible)
SfU1,1,1,0) = 18 (feasible)
Stl,-1,1,0) = constraint failure
f11,0,2,0) = constraint failure
f11,0,0,0) 4 (feasible)
f(1,0,1,1) = 18 (feasible)

it

f(1,0,1,—1) = constraint failure .

f2,1,1,0) = 22

f(3,1,1,0) = constraint failure
SL,1,1,0) = 18 (feasible)
f(2,2,1,0) = constraint failure
f12,0,1,0) = 17 (feasible)
f(2,1,2,0) = constraint failure
f12,1,0,0) = 13 (feasible)
f2,1,1,1) = constraint failure
f(1,0,1,-1) = constraint failure .
f12,0,0,0) = 8
f(3,0,0,0) = 12 (feasible)

f(1,0,0,0) 4 (feasible)
f12,1,0,0) = 13 (feasible)
f(2,-1,0,0) = constraint failure
f12,0,1,0) = 17 (feasible)
f(2,0,-1,0) = constraint failure
f(2,0,0,1) = 13 (feasible)

£2,0,0,-1) = constraint failure .

37

The best point found in

The best solutions of all neighborhoods examined above are the points (1,1,1,0) and
(1,0,1,1,), both of which result in objective function values of 18.

Variable

RY
X
R%]
R}
Ryl
R
Xy
Xq

Variable

X
X

fl

Il

€;

I+1 =
1-1
1+1
-1
1+1
-1
0+1
0—-1 =

i T T
— O NCONON

Il

fl

€;

1+1 =
1-1 =
0+1 =
0-1 =
I[+1 =
-1 =
I1+1 =

2
0
1
-1

2
0
2
0

AL1,1,0) = 18

fi2,1,1,0) = 22 (feasible)
fA0,1,1,0) = 12 (feasible)
f(1,2,1,0) = 23 (feasible)
A1,0,1,0) = 13 (feasible)

f(1,1,2,0) = constraint failure
f1,1,0,0) = 9 (feasible)
S(1,1,1,1) = constraint failure
fil,1,1,~1) = constraint failure .

£1,0,1,1) = 18

f(2,0,1,1) = constraint failure
A0,0,1,1) = 14 (feasible)
SfL1,1,1) = constraint failure
fll,—1,1,1) = constraint failure
f(1,0,2,1) = constraint failure
J(1,0,0,1) 9 (feasible)
A1,0,1,2) constraint failure
f(1,0,1,0) = 13 (feasible) .

all these neighborhoods is f(1,2,1,0) = 23, and it is not a parent point.

Variable €; f1,2,1,0) = 23
xp=1+1 =2 f(2,2,1,0) = constraint failure
n=1-1=290 f(0,2,1,0) = 19 (feasible)*
X =241 =3 f(1,3,1,0) = constraint failure
n=2-1=1 SU1L,1,1,0) = 18 (feasible)
Y3 = 1+1 =2 f(1,2,2,0) = constraint failure
3=1-1=0 f(1,2,0,0) = 14 (feasible)
y=0+1 =1 f(1,2,1,1) = constraint failure
Xy = 0-1 = -1 f(1,2,1,—1) = constraint failure .

The best point found in this search (*) is f0,2,1,0) = 19. It is not a parent point so we

examine it further.

Variable €; f(0,2,1,0) = 19
y =0+1 =1 f(1,2,1,0) = 23 (feasible)*
x=0-1= -1 f(-1,2,1,0) = constraint failure
X =2+1 =3 f(0,3,1,0) = constraint failure
X =2-1=1 f(0,1,1,0) = 14 (feasible)

38

-

Aﬂ

x3 = 1+1 =2 £(0,2,2,0) = constraint failure
x3=1-1=20 £(0,2,0,0) = 10 (feasible)

xa = 0+1 =1 f10,2,1,1) = constraint failure

Xy = 0—-1 = -1 f(0,2,1,-1) = constraint failure .

The best point in this search (*) is f{1,2,1,0) = 23, which is the parent point for this search.
Therefore, according to step 7, we start again with a type II search of the remaining feasible points
that are not parent points (i.e., (0,1,1,0) and (0,2,0,0)) and take the best of these two searches.

Variable € 0,

,\’|=0+1 =1

xy=0-1 = -1
X = 1+1 =2
Xy = 1-1 =20
X3 = 1+1 =2
X3 = I-1 =20
X4=O+1 =1

X4=0_1 = —]

1,1,0) = 14

f(1,1,1,0) = 18 (feasible)
f(-1,0,1,0) = constraint failure
£(0,2,1,0) = 19 (feasible)
£f0,0,1,0) = 9 (feasible)
f(0,1,2,0) = constraint failure
f(0,1,0,0) = 5 (feasible)
A0,1,1,1) = constraint failure

f(0,1,1,—1) = constraint failure .

Variable €; f0,2,0,0) = 10

=0+1 = 1

=
I

Xy = 0-1 = -1
X2 = 2+1 =3
Xy = 2—1 =1
X3 = 0+1 =1
X3 = 0-1 = -1
xg =0+1 =1
X3 = 0-1= -1

(1,1,1,0) and (0,2,1,0) are both previous parent points. Hence, using step 6, the next best point
that is an improvement over 10 and 14 is a tie between £{0,3,0,0) = 15 and A0,2,0,1) = 15.

Examining both of these we have:

f(1,2,0,0) = 14 (feasible)
f(-1,2,0,0) = constraint failure
£(0,3,0,0) = 15 (feasible)
f(0,1,0,0) = 5 (feasible)
£(0,2,1,0) = 19 (feasible)
f(0,2,-1,0) = constraint failure
£0,2,0,1) = 15 (feasible)

f(0,2,0,—1) = constraint failure .

Variable €; A0,2,0,1) = 15

xp =0+1 =1 f(1,2,0,1) = constraint failure
xp =0-1 = -1 f(-1,2,0,1) = constraint failure
X =241 =3 f(0,3,0,1) = constraint failure
x =2-1=1 f(0,1,0,1) = 10 (feasible)

x3 =041 =1 f10,2,1,1) = constraint failure
x3=0-1= -1 J0,2,—1,1) = constraint failure
xg = 141 =2 0,2,0,2) = constraint failure
u=1-1=0 f(0,2,0,0) = 10 (feasible) .

39

Variable €; £0,3,0,0) = 15

x =0+1 =1 f1,3,0,0) = constraint failure
X 0-1 f(-1,3,0,0) = constraint failure

X =3+1 =4 f(0,4,0,0) = constraint failure
X = 3-1=2 £f0,2,0,0) = 10 (feasible)
x3=0+1 =1 f(0,3,1,0) = constraint failure
x3=0-1= -1 f(0,3,-1,0) = constraint failure
3 =0+1 =1 f0,3,0,1) = constraint failure
xg =01 = -1 f(0,3,0,-1) = constraint failure .

No improvements are seen over the respective initial points (10 < 15), so the procedure
terminates. The integer solution is the best one so far; that is, f(1,2,1,0) = 23.

It should be noted that this procedure required only 13 univariate exploratory searches. The
branch-and-bound procedure required to solve this problem took 25 iterations. Furthermore, each
branch-and-bound iteration is a simplex problem to be solved, one of which is extremely more
laborious than one exploratory search used here. For example, IESIP requires only integer
arthimetic in adding and subtracting one to each of the variable values, whereas simplex or dual
simplex requires the use of real arithmetic and the manual manipulation of dealing with fractions if
one is solving the problem by hand. This comparison between the computational complexity of the
two methods will be examined further in section IV.

D. Justification of Optimality

In discussing direct search heuristic procedures, certain questions such as the following are
repeatedly asked: “Under what conditions does this direct search heuristic converge to the solu-
tion?” “Once a solution is found, how good is it?” “What are the advantages, if any, of this pro-
cedure over other more established methods?”

Although several algorithms have been developed for the integer problem, some of them are
not uniformly efficient from the computational standpoint, particularly as the size of the problem
increases [5]. Both the fractional cut and branch-and-bound methods require the computer to deal
with fractions. This is a major difficulty in integer programming. The effect of round-off error that
results from the use of the digital computer for solving these problems can sometimes be sig-
nificant. Thus, heuristic algorithms including approximation, direction search, and the procedure
presented here are developed to deal with integer problems with strictly integer values. This
eliminates dealing with fractions. :

The algorithm presented here is a modified direct search method that draws its abilities and
advantages from these modified and previously proven concepts. These are the greedy procedure,
neighborhood search, and the exploratory search developed by Hooke and Jeeves. This algorithm
does not pretend to be the panacea for all integer problems. Nor does it claim to always provide
the optimal integer solution in every case where it is applied. What it does claim is that it will
obtain in most cases the same “optimal” solution found by branch-and-bound with a reduction in

40

P

”

computational work required.to do so. It will perform as do other heuristic methods and find a
solution which is optimal in almost all the cases examined by this research. The exceptions to this
are noted in section V.

Since this procedure is heuristic in nature, its validation will be strongly empirical. There-
fore, in section IV, 45 test problems are examined with the branch-and-bound and IESIP tech-
niques to substantiate the abilities and advantages of the new method.

E. Computer Implementation

In order to efficiently evaluate a number of test problems, the IESIP algorithm must be
automated. For ease of use and lower cost, the personal computer environment was chosen as the
instrument for handling this task. An adequate but efficient language had to be selected for this
algorithm. BASIC was ruled out due to its inherent shortcomings related to the screen input of text
strings. FORTRAN was discounted due to the unavailablity and high cost of a compiler. Other
languages were also considered, but since the author had some familiarity with Pascal, and its

attributes seemed to accommodate the needs of the algorithm, it was chosen as the language for
IESIP.

The IESIP program was written in Pascal due mainly to the requirements for dynamic
memory allocation, pointers, and structures. The size of a problem, the number of variables, and
the number of nodes that must be expanded will vary depending on the statement of the problem.
With dynamic memory allocation, one can allocate the spaces required for a new node when the
new node is encountered, as opposed to static memory allocation that would require us to allocate
the maximum amount of memory at the start of the program.

Pointers are used to facilitate the movement of data. That is, the data structures are stored
on the linked list with pointers so we can move the data from one list to another by just moving
the pointer as opposed to moving the data.

There are two basic structures used by this program. One is the structure of a data record.
That is. a data record will hold the coefficients of up to 30 variables and 3 extra variables—I for
the value when evaluated with the objective function, 1 for the evaluation of the constraint check,
and | for the operand if the node is a constraint function. Also, the data record will contain
pointers to the previous and next data record on the linked list. The second structure is a list
record that will contain three pointers, one to each of the data records, and the previous and next
list elements.

The program can be divided into the three major sections of initialization, problem evalua-
tion, and end printout. The reader is referred to the program listing in appendix B for further
details of the purpose and function of each subroutine.

Tables 1 and 2 present a sample input and output of the program. The sample problem
presented in these tables is the solution to the four-variable problem presented earlier in this
section.

41

Table 1. Sample input from IESIP computer program.

TESTIP
Is the objective function to be maximized?
[yles/[n]o/[h]lelp default = no Y
Do you have the functions in a data file?
(yles/[n]lo/[h]lelp default = no Y
Enter the file? TEST1.DAT

Maximization problem
Number of variables = 2

Objective function:
+4000.00 X1 +7000.00 X2

Constraint function(s):
+1200.00 X1 +2000.00 X2 <= 6000.00
+25000.00 X1 +80000.00 X2 <= 200000.00

Continuous solution rounded value:
(1, 1)

Do you wish to accept this rounded solution?
{yles/[n]o/[h]elp default = yes Y

Enter the number of initial expansions
Integer or 0 for help

1

Do you wish to see the nodes as they are expanded?
(vyles/[(n]lo/[h}lelp default = no Y

One interesting feature of the program is that it allows for either manual input or data
encoding in a data file called up by the program to be evaluated. The program also allows the user
to decide how many initial type I exploratory searches (with all feasible points examined) are
needed. The program calculates the initial rounded solution for the user and asks the user if it is
suitable. The user can examine each point expansion or can only view the final results. The
program also keeps a count of the exact number of additions, comparisons, and multiplications
required to both round and find a solution. A computational complexity score is also shown at the
end of the solution output. The significance and justification for this feature are discussed in
section IV.

- 42

.o

Table 2. Sample output from IESIP computer program.

Node Expansion (1)
(1, 1) = 11000.000
(2, 1) = 15000.000
(0, 1) = 7000.000
(1, 2) 18000.000
(1, 0) 4000.000

Node Expansion (2)
(1, 2) = 18000.000
(2, 2) = C.F.
(0, 2) = 14000.000
(1, 3) = C.F.
(1, 1) = 11000.000
Press RETURN to continue...

Node Expansion (3)
(2, 1) = 15000.000
(3, 1) = 19000.000
(1, 1) = 11000.000
(2, 2) = C.F.
(2, 0) 8000.000

-

Node Expansion (9)
(5, 0) = 20000.000
(6, 0) = C.F.
(4, 0) 16000.000
(5, 1) = C.F.

Do you wish to have the problem restated?
[yles/[n]lo/[h]lelp default = no Y

Best solution(s) found:
(5, 0) = 20000.000

Computation of the rounded optimal solution required:
Additions: 2 Multiplications: 4 Compares: 2

9 Points were expanded requiring
Additions: 87 Multiplications: 174 Compares: 46

Computational complexity score = 863.827

43

IV. COMPARISON OF RESULTS - COMPUTATIONAL EXPERIMENTS

A. Algorithm Performance Measures
1. Current Methods

Developing a new algorithm such as the one presented in the preceding section is relatively
easy compared to the task of appraising the algorithm on its merits and benefits. One not only
wants an algorithm that works but an algorithm that is efficient. The efficiency of an algorithm can
be appraised by a variety of criteria. One such criterion is the execution time required by an algo-
rithm to solve a particular problem as compared to another algorithm’s time to solve the same
problem. However, such a measure is strongly dependent upon the coded program, languages, and
machine used to implement the algorithm. Thus, a difference in the program may not represent a
signficant change in the underlying algorithm but may, nevertheless, affect the speed of execution.
Furthermore, if two programs are compared first on one machine and then another, the compari-
sons may lead to different conclusions. Therefore, while comparison of actual programs running on
real computers is an important source of information, the results are inevitably affected by
programming skill and machine characteristics. Ignizio [51] recognized the comparison of algo-
rithms based on computation time as poor at best. He further suggested that if selections and
comparisons are to be intelligently made, a systematic procedure for recording and presenting an
algorithm’s performance must be implemented. He suggested that this procedure consist of the
following: (1) a standard reporting format which contains essential factors such as dates, computer
used, language used, memory used, etc., and (2) a measurement standard consisting of computation
time, internal and external storage requirements, problem size, and accuracy (i.e., how close the
algorithm came to the actual optimal answer).

An alternative to comparing execution times is the use of established software metrics.
These metrics measure the complexity of the source code. Most of the metrics incorporate easily
computed properties of the source code, such as the number of operators and operands, the
complexity of the control flow graph, and the number of parameters and global variables in
routines. The approach taken is to compute a number, or set of numbers, that measures the
complexity of the code. Halstead [52] developed a number of metrics that are widely used and
easily computed from the properties of the source code. These properties include the total number
of operators in a program, the total number of operands in the program, and the number of unique
operators and operands. Another metric available and also widely used was developed by Thomas
McCabe. McCabe's cyclomatic complexity measure [53] attempts to measure and control the
number of basic paths through a program. He represents the software via a connected graph and
computes a cyclomatic number (or score) V, where V is found by

V=E-n+2p

and E is the number of edges, n is the number of nodes, and p is the number of connected
components.

44

Vil

The basic underlying drawback to these two approaches being utilized in comparing two
algorithms is that they are extremely dependent on the software coding itself. Different
programmers or the same programmer on different days could produce different results. Thus, if
using these methods solely to compare a candidate algorithm to an existing algorithm, one might
be comparing the software of a highly skilled programmer against a moderately skilled one.

Another approach to algorithm performance lies in the arena of accuracy. Parker and Rardin
[25] and Lee and Lee [53] suggest that when comparing a nonexact heuristic algorithm to an exact
procedure, a comparison should be made by “performance ratio.” This bases the performance of
the challenger algorithm solely on the quality of the solution obtained. The performance ratio in
question is

V(1) e C
—_— il 1 1s a maximization problem
v(1) P
Pu(t) =

vul® il 1 is a minimization problem.

v(t)

vy(1) is the value of the solution returned by the nonexact heuristic procedure H on instance ¢
and v(7) is the value of an optimal solution at instance #,. Several points or drawbacks to this
approach are also noted. One is that the ratios make sense only when the solution values are non-
negative. Also, adding a constant to the objective function changes no solutions, but does impact
the ratio (e.g., a maximization ratio of 57/55 adjusted by a constant of 2 yields 59/57, hence 57/55
59/57). This ratio only has merit if most of the heuristic solutions are different from the optimal
solution. If the purpose is to show that a particular algorithm is better than an existing algorithm
on a certain class of problem and the optimal solution is nearly always obtained using the heuristic
procedures, then the accuracy performance ratio would only show it performed equally well, not
better.

2. Proposed Alternative

This research has produced an algorithm that competes with an existing algorithm (branch-
and-bound) in the solution of pure integer programming problems. The preceding section outlined
some accepted procedures for comparing algorithms against one another. These procedures are well
established and, in the correct application, are useful in determining the efficiency or lack of effi-
ciency of a new algorithm. However, since the author developed the software for the IESIP pro-
cedure and is comparing it to an existing commercially available branch-and-bound algorithm Quan-
titative Systems for Business (QSB), the use of comparing run-times and software metrics is ruled
out. Furthermore, since a primary objective of this research was to show that the new algorithm is
better than branch-and-bound on a certain class of problems, the accuracy performance ratio
approach is not useful due to its inability to show improvement of the heuristic over the existing
procedure.

With this in mind, the need for an alternative approach for comparing methods became
obvious. A process was needed that not only showed the benefits of using the new algorithm on a
computer, but also the intrinsic value of its ease of calculation when done manually (on paper).
Crowder, Dembo, and Mulvey suggest the following:

45

A variety of performance indicators has been traditionally used by mathematical
programmers for evaluating the efficiency of competing techniques. A simple count-
ing of the number of steps is required by the algorithm. This indicator is relatively
independent of the computer used. Another indicator is the number of times that a
basic operation such as addition or multiplication/division is required during the
execution of the algorithm [54].

Such a procedure was alluded to by Kronsjo [55] and substantiated by others. This alterna-
tive approach bases its criteria on the computational compexity of an algorithm. In using this termi-
nology, Kronsjo refers to estimating the computational effort required to solve the problem and
measuring it by the number of arithmetic or logical operations required, e.g., the number of
multiplications and additions needed and the number of comparisons between two entries in an
iterative algorithm. This approach was also utilized by Winograd in his devlopment of ways to
improve the efficiency of computational algorithms. He developed identities relating number of
multiplications and additions required to evaluate certain forms of polynomials and later extended
this to the total number of arithmetic operations required of an algorithm [55]. This literature and
the consultation of Drs. Hooper and Ranganath of the University of Alabama in Huntsville Compu-
ter Science Department [56] encouraged the author to develop a procedure termed Computational
Complexity Scoring (CCS) system, to compare the performance of the new algorithm against the
branch-and-bound method on a given problem. The scoring procedure and comparison methodology
will now be discussed in detail in the following section.

B. Algorithm Computational Complexity Comparison

After examining the suggestions of Winograd, Kronsjo, Crowder, et al., and Hooper and
Ranganath, a scoring system was developed for the evaluation of these two competing techniques.
The scoring system contains three distinct aspects. One is the knowledge of how many specific
seed value expansions (explorations) are required to solve the problem. If solving the problem by
hand, one simply counts the number of times a point is examined. If the IESIP software is being
utilized, it will keep track of this value for the user. The same requirement is true of the branch-
and-bound technique. Knowledge of the number of iterations required to solve the problem is
needed. An iteration using the branch-and-bound software utilized in this research refers to a con-
clusive (either feasible or infeasible) iteration of the simplex method obtained from a node investi-
gation.

Another piece of knowledge required by the scoring system is the number of comparisons
(e.g., is one value less than another?), additions (subtractions), multiplications, and divisions
required of IESIP to do an expansion, or of branch-and-bound to perform a simplex (dual) itera-
tion. Also required is a relative “weight” or duty factor associated with each of these operations.
For example, multiplication and division increase computational complexity not only for the person
solving the problem by hand, but also for the computer. The latter two aspects, number of opera-
tions and relative weights, required further explanation in the following sections.

46

m\

1. Number of Operations

When an individual performs a branch-and-bound integer programming procedure by hand,
he generally is faced with the painstaking ritual of adding, subtracting, multiplying, and dividing
numerous sets of fractional numbers at every iteration of this procedure. With IESIP, this task has
been reduced to a simple case of adding and subtracting ““1,” multiplying by integers, and evaluat-
ing a constraint (comparison), with no fractional operations or divisions.

Examining IESIP first, and using the following worst case assumptions, the number of
additions/subtractions, multiplications, and comparisons can be formulated:

(1) All contraints must be examined each time a point is explored. (Best case would be a
constraint failure detection on the first constraint examined.)

(2) Every expansion examines both +1 and — 1 increments on each variable. This would
be decreased if all coefficients in the objective function were positive. (IESIP rule states that if the
+ | increment does not have a constraint failure, then there is no need to examine the — |
increment in a maximization problem.)

Addition/Subtraction Operations:
(1) Incrementation of each variable by +1 or —1 — (2) (# of variables)

(2) Addition of each constraint term —> # variables — |

(3) Total additions for constraint evaluation — (# variables — 1) (# constraints) (2) (#
variables).

Therefore, the total number of addition/subtraction operations per IESIP expansion is

2v+(v—1X)2v) = 2v(l+ve—0) (5

where v is the number of variables and ¢ is the number of constraints.
Multiplication Operations:
(1) Evaluation of the objective function at each increment of 1 — (2) (# variables)

(2) Evaluation of each constraint at each increment of | — (2) (# variables) (# variables)
(# constraints).

Therefore, the total number of multiplication operations per IESIP expansion is

2v+ (2v)(ve) = 2v(1 +ve) (6)

47

Division Operations:
No division is required when using IESIP.

Comparison Operations:
(1) Checking constraints — (2) (# variables)(# constraints)
(2) Checking the best value against the previous best —> 1.

Therefore, the total number of comparison operations per IESIP expansion is
2ve+1 (7
Now we will examine the branch-and-bound procedure. In order to give it the benefit of the
doubt, we will make best case assumptions. These are the following:
(1) Only one additional constraint is added to the simplex problem at each iteration.
(2) Optimal for a respective iteration is obtained with use of dual simplex only. Sometimes
in branch-and-bound, the user must apply regular simplex to find optimal within a partcular node

branch when dual simplex cannot be continued.

Addition/Subtraction Operations:
(1) Calculation of each new row —> (# variables + # constraints + | + 1) (# constraints)
Extra RHS Not constraints + 1
Constraint Value since pivot row is
done by division.

(2) Calculation of xy, row —> (# constraints +) (# constraints + # variables+ 1 + 1).

Therefore, the best case total number of additions/subtractions at each iteration of branch-and-bound
is

W+ +(c+Dv+c+2) = (v+c+2) 2c+]) 3)

Muitiplication Operations: (same as addition/subtraction)

48

-

Division Operations:

(1) Pivot row calculations —> # variables + # constraints + 1 + 1

Extra RHS
Constraint

(2) Ratio row calculations — # variables + # constraints + | .

Added
Constraint

Therefore, the best case total number of division operations at each iteration of branch-and-bound
is

vice+2+v+c+1l = 2v+2c+3 9

Comparison Operations:
(1) Searching for pivot —> (# constraints + 1) +(# variables + # constraints + 1)
(2) Check to see if done — (# constraints + 1)
(3) Compare to best value so far — 1.
Therefore, the best case total comparison operations at each iteration of branch-and-bound is

c+l+v+e+l+e+1+1 = v+3c+4 (10)

Finally, to compute the total number of respective operations for either branch-and-bound or
IESIP, one need only multiply the total number of expansions or iterations by the values obtained
with the above formulas to obtain the totals for each operation type. An example will follow later
in this section that describes the details of this calculation.

2. Weights Associated With Each Operation

It would be difficult to determine the relative difficulty encountered by an individual solving
an ILP problem between addition and multiplication calculations. However, a computer examines
the two operations on a consistent mechanical field of play and weights the difficulty of each oper-
ation according to how much work it has to do to accomplish a respective task. For instance, the
Intel 80286 microprocessor-based personal computer can execute a compare instruction in 6 clock
cycles, while the same machine requires 25 clock cycles to execute a division instruction. In
table 3, the clock period instruction times of a representative sampling of personal computer
microprocessors are listed for the four operations required by the two algorithms presented here.

49

Table 3. Worst case microprocessor instruction times [57,58].

(Values in number of clock periods)

80286
Motorola Intel Intel Relative
Instruction 68010 80386 80286 Effort
(1982) (1988) (1988) Factors
Compare 6 5 6 1

Add/Sub 12 7 7 1.1666

Multiply 42 24 24 4.0
Divide 122 25 25 4.1666

125 nanoseconds/period
50 nanoseconds/period

Note: 80286 Clock Period
80386 Clock Period

The Intel 80286 is chosen as the benchmark for our comparison for the following two reasons: (1)
it is widely available for both student and industry users, and (2) it is the microprocessor that was
used by the author to conduct this study. Also shown in the table are the relative weights for each
operation. These are calculated by taking the compare operation as the lowest user of computer
effort and relating it by a multiplication factor to the other more effort-demanding operations.
The only task remaining to produce a composite computational complexity score for a
problem is to multiply the total addition, multiplication, division, and compare operations by
their respective effort factors and sum to a total value. A detailed example follows which uses a
previously solved problem from section III and the output of the branch-and-bound based ILP
software package called QSB.
C. Example Problem
From section III we have:
maximize Z = flx;,x;) = 4,000x, + 7,000x;
subject to: 1,200x, +2,000x, < 6,000
25,000x, + 80,000x, < 200,000
X;.x> = 0 and integer.
Using IESIP in section III, we obtained an integer solution of A5,0) = 20,000 after nine

expansions (or exploratory searches).

Using QSB, the following branch-and-bound solution is obtained after nine iterations:

50

M\

Summary of Results for TEST1 Page : 1

Variables obj. Fnctn.[Variabies Obj. Fnctn.

No. Names| Solution |Coefficient|No. Names| Solution |[Coefficient

1 X1 5.000 4000.000 |2 X2 0.000 7000.000
Maximum value of the OBJ = 20000 Total iterations = 9

Therefore, using the equations from the preceding section we have:

IESIP

Additions — 2v(l +vc—c¢) = 2Q2) 1 +(2)(2)—2) = 12
(from equation (5))

Multiplications — 2v(1 +vc) = 22)(1+(2)(2)) = 20
(from equation (6))

Divisions —> 0

Comparisons — 2ve+1 = 2)2)2)+1 = 9
(from equation (7))

Therefore. at nine expansions, the totals are:
108 Addition Operations

180 Multiplication Operations
0 Division Operations

81 Comparison Operations

Now using the effort factors developed, the following computational complexity score can be deter-
mined for the IESIP algorithm:

CCS; = 8I1(1)+ 108(1.1666) + 180(4.0) +0(4.1666) = 927
Branch-and-Bound

Additions — (v +c+2)2c+1) = 2+2+2)((2)2)+1) = 30
(from equation (8))

Multiplications — (v+c¢+2)2c+1) = 2+2+2)((2)2)+1) = 30
(from equation (8))

Divisions — 2v+2c+3 = (2)(2)+(2)2) + 3 = 11
(from equation (9))

51

Comparisons — v+3c+4 = 2+(3)2)+4 = 12
(from equation (10))

Therefore, at nine iterations, the totals are

270 Addition Operations

270 Multiplication Operations
99 Division Operations

108 Comparison Operations

Using the effort factors developed, the following computational complexity score can be determined
for the branch-and-bound algorithm:

CCSg = 108(1.0)+270(1.1666) + 270(4.0) +99(4.1666) = 1,915.5.

Since the IESIP algorithm’s score (927) is less than the branch-and-bound score (1,915.5),
we can say that it was a computational improvement over the branch-and-bound. Furthermore, as

an added benefit, it also achieved the same optimal solution as the branch-and-bound pro-
cedure—£(5,0) = 20,000.

As previously mentioned in section III, the IESIP computer program calculates the exact
number of additions, multiplications, and comparisons required by the IESIP algorithm to solve a
particular problem. The example just solved by the IESIP software produced the following output:

Best solution(s) found: (5,0) = 20000.000

Computation of the rounded optimal solution required:
Additions: 2 Multiplications: 4 Compares: 2

9 Points were expanded requiring
Additions: 87 Multiplications: 174 Compares: 46

Computational complexity score = 863.827.

One can easily ascertain that the IESIP CCS using the software is much lower than the
worst case value just computed by hand. This is due to the software’s ability to eliminate certain
needless computations such as expanding type II searches in both the “minus one” and “plus one”
directions after a success of one or the other. In contrast, the manual method presented above
assumes worst-case conditions, i.e., every point is expanded with both +1 and —1.

In part D of this section, a table is presented that summarizes the findings obtained using
some test problems. The computational complexity score for the IESIP algorithm shown for each
test problem is the score found using the software. The score shown for branch-and-bound is the
score found by assuming the best case situation described earlier in this section (to give branch-
and-bound its best advantage).

52

M |

s

Table 4. Computational results of test problems.

Pm::m' vanmm; :mi 0?::'31 . SolI;J\aStlz‘]:n o | B&B | [ESIP |[mprove- I:mmz l::::"o;
Type | constraints (c) Value Value s | ccs ment | over BAB | Ratio
1 Max| 2v,2% 20,000 *(9)| 20,000 (9)] 1915.5| 863.8 | Yes 549% | 1.00
2 Max 2v, 2% 0)| 0 (1)]10642| 885 | Yes 917%| 1.00
3 Max 2v,2c | Infeasible(2) |Infensible(1] 425.7 | 203 | Yes 952% | 1.00
4 Max 2v, 2c 10 @ | 10 @| 6385] 2910 | Yes 544%| 1.00
5 Max 2v, 2 17 an| 17 @ | 36182| 3207 | Yes 909%| 100
6 Min 2v, 2¢ 40 @3)| 40] 6385] 679.7 | No -65% | 1.00
7 Min 2v, 2 2)| 2 @] 10642 359.2 [Yes 662% | 1.00
8Max | 2v,2 12 ()| 12 (4)|1064.2| 3408 | Yes 679% | 1.00
9Max | 2v,2c 4 (1| 4 4)]|23412| 2818 | Yes 87.8% | 1.00
10Max| 2v,2c 165 (5)] 165 (4)| 1064.2] 359.2 | Yes 662% | 1.00
11Max| 2v,2c 37 ()| 37 (4)] 1064.2| 359.2 | Yes 66.2% | 1.00
12Max| 2v,2c 11)| 11 @] 1064.2| 3297 | Yes 69.0% | 1.00
13Min| 2v,2 6 | 6 ()] 6385| 397.8 | Yes 377% | 1.00
14Max| 2v,2% 13 ()| 13 (65)|1064.2| 3592 | Yes 662% | 1.00
15Max| 2v,2 10 (3] 10 (5)| 6385| 388.7 | Yes 39.1% | 100
16Max| 2v,2 57 (5)| 57 (5)|1064.2| 6023 | Yes 434% | 100
17Min| 2v, 2% 19 (3| 19 ()| 6385| 5047 | Yes 209% | 1.00
18Max| 2v,2 5 (M| 5 (9914893 648.2 | Yes 565% | 1.00
19Max| 2v,3c 24 (| 24 (4)]2256.7| 4812 | Yes 787% | 1.00
20Max| 2v,3c 16)] 16 (5] 29010 6775 | Yes 766% | 1.00
21 Max| 2v,3c 102 3| 102 (5)| 967.0] 610.3 | Yes 369% | 1.00
22Max| 3v,2 100 @ 10 (10)] 7440/ 19190 | No | -1579%| 1.00
23Max| 3v, 2% 45 (19 45 (4)] 47120 699.7 | Yes 852% | 1.00
24 Max| 3v,2c 15 (3| 15 (8)| 7440|209.7 | No | -181.0% | 1.00
25Max| 3v, 3c 10 © | 10 ®]2207.0] 1979.0| Yes 103% | 1.00

54

Table 4. Computational results of test problems (continued)

26 Max| 3v,3c 26 (5)| 26 (3)] 18392 824.3| Yes 55.2% | 1.00
27Max| 3v,3c 478(117)| 478 (9)]| 43036.5| 2987.3| Yes 931% | 1.00
28Max| 3v,3c 64 (5] 64 (1] T1839.2 362.0| Yes 80.3% | 1.00
29Max| 3v,3c 23 (5)| 23 (3| -1839.2 870.3| Yes 527% | 100
30Max| 3v,3c 4 (B)| 4 ()| 18392 853.0| Yes 536% | 1.00
31 Max v | 14 (9| 14 (6)] 33105 12753 Yes 615% | 100
32 Max 3v, 3¢ 8 (43| 8 (1| 158169 29536| Yes 813% | 1.00
33Max| 3v,4c 5 (A1 5 (1) | 5580.7 4540 Yes | 919% | 1.00
34Max| 3v,4c |27 (13)| 27 (1] 65953 4540 Yes | 93.1.% | 1.00
35 Max 3v, 5¢ 18 (3|18 (9| 20085| 24656| No -228% | 1.00
36Max| 4v,3c |63 (23)] 63 (6)| 95067 2259.0] Yes | 762% | 100
37Max| 4v,3c |23 (25)] 23 (13) [103332 | 6131.9] Yes | 407% | 100
38Min| 4v,3c 23 (11)]| 23 (84) | 4546.7 | 264432| No | -481.6%| 1.00
39Max| 4v,3c 22 (13)| 22 (6)| 5373.3| 20745| Yes | 614% | 1.00
40 Max| 4v,3c 42 (M| 42 @ | 28933| 11085 Yes | 61.7% | 100
41 Max| 4v,3c 28 (3|28 3| 12400| 11085| Yes | 106% | 1.00
42Max| 4v,6c |4250 (49)] 4250 (4) | 45463.8] 24555 | Yes | 946% | 100
43Max{ 6v,3c |1400 (33)]| 1400 (9) | 16643.0| 103206 | Yes | 380% | 1.00
44Max| 10v,4c |90481(125)]90481 (53)| 246812.5 1600525 | Yes | 352% | 1.00
45Max| 20v,dc |92564 (207){ 92550 (22)| 301702.5{279541.2 | Yes | 7.3% [1.00015

* Numbers in parenthesis indicate number of iterations and expansions for
branch-and-bound and IESIP respectively.

”

Table 5. Summary of test problem results.

Type of Problem tmprovements | No Improvement | | _ Average ki aB
Var. | # Constrainta| # Max. | #Min | # Total OverB&B over B& B Type | for a Class of Problems
2 2 14 4 18 17 (94.4 %) 1 (min) 63.2 %
2 3 3 0 3 3 (100 %) 0 64.1%
3 2 3 0 3 1 (33.3 %) 2 (max) -
3 3 8 0 8 8 (100 %) 0 6l %
3 4 2 0 2 2 (100 %) 0 92.5%
3 5 1 0 1 0 (0%) 1 (max) -—
4 3 5 1 6 5 (83.3%) 1 (min) --
4 6 1 0 1 1 (100 %) 0 i *
6 3 1 0 1 1 (100 %) 0 *
10 4 1 0 1 1 (100 %) 0 *
20 4 1 0 1 1 (100 %) 0 *
Totals 40 5 45 40 5 (2 min)
(3 max)
Total Percentage of Problems that Showed Improvement over B & B = 88.9 %
Percentage of Maximization problems that Showed Improvement over B & B = 92.5 %
Percentage of Minimization problems that Showed Improvement over B & B = 60.0 %
Average percent improvement in Computational Complexity (all problems) = 35.6 %

Average percent improvement in Computational Complexity (only improved problems) = 61.2 %

* only one test problem was examined for this class of problem

D. Computational Experience With Test Problems

In order to verify the improved efficiency of the heuristic developed in this research, it is
necessary to solve a variety of test problems using the new algorith. There were 45 problems found
in different texts and they vary in size from 2 variables and 2 constraints up to 20 variables and 4
constraints. These test problems and their sources are presented in appendix C. Of the 45
problems. 41 were solved manually as well as with the IESIP software in appendix B. The remain-
ing 4 problems, because of their size, were solved only with the software. Every test problem was
also solved using the commercially available branch-and-bound integer programming software
entitled QSB. The results of the test problems are presented in tables 4 and 5.

55

When solved with the IESIP algorithm, 44 of the 45 test problems achieved the same
optimum solution as found with the branch-and-bound method. The one remaining problem (20
variables) got a near optimal answer that had a performance ratio (Parker and Rardin optimal/
heuristic ratio) of 1.00015. Of the 45 test problems, 40 (89 percent) showed substantial

improvement over the branch-and-bound solution examined in light of their respective computa-
tional complexity scores.

E. Multiple Optima

Two of the test problems illustrate a major advantage of the IESIP algorithm over the
branch-and-bound algorithm. This is its ability to find and identify multiple optimal solutions. As

an example, test problem 18 when solved with the branch-and-bound algorithm produces the
following results:

Summary of Results for TEST18 Page : 1
Variables Obj. Fnctn.|Variables Obj. Fnctn.
No. Names| Solution |[Coefficient|No. Names| Solution |Coefficient
1 X1 5.000 1.000 {2 X2 0.000 1.000
Maximum value of the OBJ = 5 Total iterations = 7

Notice that only one solution is produced (5,0) with no indication of multiple optima. How-
ever, when the same test problem is solved using IESIP, it produces three optimal solutions in nine

expansions—(5,0), (3,2), and (4,1). All three are recognized and printed by the software as shown
below:

Is the objective function to be maximized?
[yles/[n]o/[h]elp default = no Y

Do you have the functions in a data file?
(yles/[n]lo/[h]lelp default = no Y

Enter the file? TEST18.DAT

Maximization problem
Number of variables = 2

Objective function:
+1.00 X1 +1.00 X2

Constraint function(s):

+2.00 X1 +5.00 X2 <= 16.00

+6.00 X1 +5.00 X2 <= 30.00
Continuous solution rounded value:

(3, 1)

56

y.l

4

m |

Do you wish to accept this rounded solution?
[yles/[n]lo/[h]elp default = yes ¥
Enter the number of initial expansions

Integer or 0 for help
1

Do you wish to see the nodes as they are expanded?

(yles/[n]o/[h]elp default
Node Expansion (1)
(3, 1) = 4.000

(3, 2) = 5.000

Node Expansion (2)
(4, 1) = 5.000
(5, 1) = C.F.
(3, 1) = 4.000
(4, 2) C.F.
(4, 0) = 4.000
Press RETURN to continue...
Node Expansion (3)
(3, 2) = 5.000
(4, 2) = C.F.
(2, 2) = 4.000
(3, 3) = C.F.
(3, 1) = 4.000
Node Expansion (4)
(2, 1) = 3.000
(3, 1) = 4.000
(1, 1) = 2.000
(2, 2) = 4.000
(2, 0) = 2.000
Press RETURN to continue...

Node Expansion (9)
(5, 0) = 5.000
(6, 0) = C.F.

(4, 0) = 4.000
(5, 1) = C.F.

no Y

Node Expansion (5)

(3, 0) = 3.000
(4, 0) = 4.000
(2, 0) = 2.000
(3, 1) = 4.000

Node Expansion (6)

(3, 1) = 4.000
(4, 1) = 5.000
(3, 2) = 5.000

Node Expansion (7)
(4, 0) = 4.000
(5, 0) = 5.000
(4, 1) = 5.000
Press RETURN to continue...

Node Expansion (8)
(2, 2) = 4.000
(3, 2) = 5.000
(2, 3) = C.F.
(2, 1) = 3.000

Do you wish to have the problem restated?

[yles/[n]o/[h]lelp default

Maximization problem
Number of variables = 2

no Y

57

Objective function:
+1.00 X1 +1.00 X2

Constraint function(s):
+2.00 X1 +5.00 X2 <= 16.00
+6.00 X1 +5.00 X2 <= 30.00

Continuous solution rounded value:
(3, 1)

Best solution(s) found:
(5, 0) = 5.000
(3, 2) 5.000
(4, 1) = 5.000

Computation of the rounded optimal solution required:
Additions: 2 Multiplications: 4 Compares: 2

9 Points were expanded requiring
Additions: 65 Multiplications: 130 Compares: 32

Computational complexity score = 648.162

F. Restrictions Required of IESIP

Associated with many heuristic procedures are certain restrictions placed on the type and
size of problem that realistically can be solved. The IESIP algorithm’s only restriction is that it
cannot accommodate strict “equal to” (=) constraints. This problem is apparent and self-explained
when one tries to round a continuous solution to an integer solution when starting the IESIP
algorithm.

The following example illustrates the “equal to” constraint dilemma:
maximize Z = fix;.x2,x3) = 20x;+ 10x;+ 10x3
subject to: 2x; +20x; +4x3 < IS5

6x, +20x,+4x; = 20

X1,X2,x3 = 0 and integer .

The continuous solution is f{3.333,0,0) = 66.666. If an attempt is made to apply the IESIP
rounding principles, then a suitable starting solution cannot be found. For example, (3,0,0) fails
constraint two. So does every other combination except the unique and optimal solution of (2,0,2)
= 60. Unless one is “lucky” and the optimal equals the rounded solution, no feasible continuous
rounded solution can be found for a problem like this, and therefore the IESIP algorithm has no
starting point. Not even (0,0,0) will work.

58

!

The only other restriction found for the IESIP algorithm is in its software version. Due to
segmetation of memory by MS-DOS, Pascal programs are limited to 640 (655,360) kilobytes of
memory. When solving the last test problem (20 variables, four constraints), an attempt was made
to extend the type I search to a second level and see if the optimal solution would be found. The
program was halted at expansion number 96 due to lack of memory. This problem did not occur
with the 10 variable problem that was type I expanded twice. This memory problem will be
dependent on the following three factors: (1) number of variables, (2) number of constraints, and
(3) number of expansions required to solve the problem. It should be noted that this problem
would not occur if the software were simply placed on a mainframe computer with a much larger
memory capacity than a typical PC-based system.

V. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusion

The purpose of the search documented in the previous sections was the creation of an
improved heuristic search technique for solving pure integer linear programming problems. By
drawing from the ideas of Hooke and Jeeves type I and type Il exploratory searches, greedy pro-
cedures, and neighborhood searches, the IESIP algorithm starts with the tontinuous solution to the
problem which it rounds to a starting integer solution, then expands points until obtaining the best
maximum or minimum solution to the problem. Not only does IESIP show significant computa-
tional complexity improvements over the branch-and-bound method in 89 percent of the 45 test
problems examined, but it also finds the global optimal solution in all but one of these.

In summary, the following five conclusions are drawn from the previous discussion:

1. IESIP has clearly proven itself to be more computationally efficient than the branch-and-
bound method in 40 of the 45 test problems that were examined. It also has been shown that
IESIP found the same optimal solution as the branch-and-bound method in 44 of the 45 test
problems. Furthermore, the one problem that did not achieve the optimal value was only 14 off the
optimal which gives a heuristic solution performance ratio of 1.00015.

2. A computational complexity scoring system was developed to compare the number and
degree of actual computations required of the IESIP algorithm and the best case number and degree
of computations required of the branch-and-bound algorithm. These scores were computed for each
test problem and shown in table 4 of section IV. Of the problems that showed improvement, the
average percentage improvement in computational effort over the branch-and-bound method was
61.2 percent.

3. IESIP showed ability in solving larger problems. This was illustrated by solving both a
10 and 20 variable problem. It also showed an ability to find far-removed-from-continuous integer
solutions (integer solutions that are not close to their rounded continuous solution) with approxi-
mately 55 percent less computational effort than branch-and-bound (see problem | and problem
15).

39

4. TESIP was also found to have one other advantage over branch-and-bound in that in two
cases (test problem 18 and test problem 25) alternative optima were not only recognized but also
identified. The branch-and-bound algorithm only found one of the optimal solutions in each
problem and also gave no indication that other solutions exist.

5. Lastly, and probably the most overlooked improvement in integer programming brought
about by this research, is the ease of its implementation and execution when one is solving a
problem by hand. If a problem (e.g., test problem 1) requires nine iterations of dual simplex to
solve by the branch-and-bound algorithm and nine expansions of IESIP, then the computational
work involved in manually solving this problem with IESIP is much easier than the nine full
tableaus of simplex required if solving it with branch-and-bound. This is primarily due to the IESIP
procedure’s univariate use of only + 1 and —1 in its solution process. This improvement of not
having to go through the agony of calculating three or four new basic rows with each iteration of
simplex is, in the author’s opinion, quite valuable, particularly for instructional purposes.

The methodology and heuristic procedure developed and illustrated in the preceding sections
represent an improved exploratory search technique for solving certain integer programming
problems. The algorithm not only solves two and three variable problems, but also works well on
the tougher 6, 10, and 20 variable problems. The only apparent limitation discovered about the
algorithm is its inability to deal with “equal to” constraints. However, various combinations of
“less than or equal to” and “greater than or equal to” constraints did not affect the algorithm’s
ability to find an optimal solution. It is this seemingly broad range of applications that will hope-
fully stimulate future research on the application of this procedure to larger and more complex
problems.

B. Recommendations for Future Work

With some minor modifications to the algorithm and software, one could solve nonlinear
integer programming (NLIP) problems. The body of knowledge surrounding NLIP problems could
be enhanced by possible improvements from a nonlinear IESIP. This topic could be examined from
both a nonlinear objective function with linear constraints standpoint and also from a nonlinear
objective function and nonlinear constraint situation. IESIP’s impact on nonlinear problems will be
even better than what was achieved on linear problems, since NLIP’s are generally even more
cumbersome to work with than linear problems.

Another area of exploration would be the detailed analysis of many more problems of vary-
ing variable and constraint size to further substantiate the improved efficiency of IESIP over
branch-and-bound. For example, one might determine that if the number of constraints is three
times the number of variables, then the likelihood of IESIP having a lower CCS score is greatly
reduced. This particular investigation would require large numbers of sample or test problems of
various sizes.

Finally, the possiblity of extending IESIP to mixed programming problems bears investiga-
tion. Certain modifications in the searching procedures designed to separate integer-constrained
variables from those without such restrictions (analogous to mixed cutting methods) may be
possible.

60

7

10.

1.

12.

14.

REFERENCES

Nemhauser, G.L., and Wolsey, L.A.: “Integer and Combinatorial Optimization.” John Wiley

and Sons, New York, 1988, pp. vii and 60.

Beale, E.M.: “Integer Programming.” Computational Mathematical Programming, Vol. 15,

1985, p. 2.

Taha, H.A.: “Integer Programming — Theory, Applications, and Computations.” Academic

Press, New York, 1975, pp. 2, 6, and 202-225.

Garfinkel, R.S., and Nemhauser, G.L.: “Integer Programming.” John Wiley and Sons, Inc.,

New York, 1972, pp. 2-5, 60, 324-337.

Taha, H.A.: “Operations Research: An Introduction.” MacMillan Publishing Co., New York,

1987. pp. 305-330.

Gomory, R.E.: “An Algorithm for Integer Solutions to Linear Programs.” Recent Advances in

Mathematical Programming, Graves and Wolfe, eds., McGraw-Hill, New York, 1963, pp.
269-302.

Gondran, M., and Simeone, B.: “Cutting Planes.” Annals of Discrete Mathematics, Vol. 5,

1979. p. 193.

Salkin, H.M.: Integer Programming.” Addison-Wesley Publishing Co., Reading,
Massachusetts, 1975, pp. 17-19.

Land, A., and Doig, A.: “An Automatic Method for Solving Discrete Programming
Problems.” Econometrica, Vol. 28, No. 3, 1960, pp. 497-520.

Dakin, R.T.: “A Tree Search for Mixed-Integer Programming Problems.” The Computer
Journal, Vol. 8, 1965, pp. 250-255. :

Driebeck, N.: “An Algorithm for the Solution of Mixed Integer Programming Problems.”
Management Science, Vol. 12, No. 7, 1966, pp. 576-587.

Balas, E.: “An Additive Algorithm for Solving Linear Programs With Zero-One Variables.’

Operations Research, Vol. 13, No. 4, 1965, pp. 517-548.

Lemke, C., and Spielberg, K.: “Direct Search Algorithm for Zero-One and Mixed Integer
Programming.” Operations Research, Vol. 15, No. 5, 1967, pp. 892-914.

Geoffrion, A.M.: “An Improved Implicit Enumeration Approach for Integer Programming.”

Operations Research, Vol. 17, 1969, pp. 437-454.

61

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

62

Budnick, F.S., Mojena, R., and Vollmann, T.: “Principles of Operations Research for
Management.” Richard D. Irwin, Inc., Homewood, Illinois, 1977, p. 229.

Ozan, T.M.: “Applied Mathematical Programming for Production and Engineering
Management.” Prentice-Hall, Englewood Cliffs, New Jersey, 1986, pp. 306-392.

Healy, W.C.: “Muluple Choice Programming.” Operations Research, Vol. 12 1964, pp.
122-138.

Reiter, S., and Sherman, G.: “Discrete Optimizing.” Journal of the Society for Industrial and
Applied Mathematics, Vol. 13, No. 3, 1965, pp. 864-889.

Reiter, S., and Rice, D.B.: “Discrete Optimizing Solution Procedures for Linear and Non-
linear Integer Programming Problems.” Management Science, Vol. 12, No. 11, 1966, pp.
829-850.

Kreuzberger, H.: “Numerische Erfahrungen mit einem heuristischen verfahren zur LOsung
ganzzahliger linearer optimierungsprobleme.” Electronishe Daten-verarbeitung, Heft 7, 1970,
Seiten 289-306.

Kochenberger, G.A., McCarl, B.A., and Wyman, F.P.: “A Heuristic for General Integer
Programming.” Decision Sciences, Vol. 5, 1974, pp. 3644.

Hillier, F.S., and Lieberman, G.J.: “Introduction to Operations Research.” Holden-Day, Inc.,
Oakland, California, 1980, pp. 714, 715, and 740.

Cooper, L., and Cooper, M.W.: “All-Integer Linear Programming - A New Approach via
Dynamic Programing.” Naval Research Logistics Quarterly, Vol. 25, No. 1, 1978, pp.
425-429.

Marsten, R.E., and Morin, T.L.: “A Hybrid Approach to Discrete Mathematical Program-
ming.” Mathematical Programming, Vol. 14, 1978, pp. 21-40.

Parker, R.G., and Rardin, R.L.:; “Discrete Optimization.” Academic Press, Inc., Boston,
Massachusetts, 1988, pp. 357-383.

Cooper, M.W.: “A Survey of Methods for Pure Nonlinear Integer Programming.”
Management Science, Vol. 27, No. 3, 1981, pp. 353-361.

Pegden, C.D., and Petersen, C.C.: “An Algorithm for Solving Integer Programming Problems
With Separable Nonlinear Objective Functions.” Naval Research Logistics Quarterly, Vol. 26,
1979, pp. 595-609.

Cabot, V.A., and Erenguc, S.S.: “A Branch-and-Bound Algorithm for Solving a Class of
Nonlinear Integer Programming Problems.” Naval Research Logistics Quarterly, Vol. 33,
1986, pp. 559-567.

f”

29.

30.

31.

32.

33.

34.

35.

37.

38.

39.

40.

41.

42.

Balas, E.: “Duality in Discrete Programming: The Quadratic Case.” Management Science,
Vol. 16, 1969, pp. 14-32.

McBride, R.D., and Yormark, J.S.: “An Implicit Enumeration Algorithm for Quadratic
Integer Programming.” Management Science, Vol. 26, No. 3, 1980, pp. 282-296.

Volkovich, O.V., Roshchin, V.A., and Sergienko, 1.V.: “Models and Methods of Solution of
Quadratic Integer Programming Problems.” Cybernetics, Vol. 23, No. 3, 1987, pp. 289-305.

Wagner, H.M., Giglio, R.J., and Glaser, R.G.: “Preventive Maintenance Scheduling by
Mathematical Programming.” Management Science, Vol. 10, No. 2, 1964, pp. 316-334.

Giglio, R.H., and Wagner, H.M.: “Approximate Solutions to the Three-Machine Scheduling
Problem.” Operations Research, Vol. 12, No. 3, 1964, pp. 305-324.

Bartholdi, J.J.: “A Guaranteed-Accuracy Round-Off Algorithm for Cyclic Scheduling and Set
Covering.” Operations Research, Vol. 29, No. 3, 1981, pp. 501-511.

Baum, S., and Trotter, L.E.: “Finite Checkability for Integer Rounding Properties in Com-
binatorial Programming Problems.” Mathematical Programming, Vol. 22, 1982, pp. 141-147.

Boffey, T.B., and Green, J.R.: “Design of Electricity Supply Networks.” Discrete Applied
Mathematics, Vol. 5, 1983, pp. 25-38.

Dillon, T.S., and Edwin, K.W.: “Integer Programming Approach to the Problem of Optimal
Unit Commitment With Probabilistic Reserve Determination.” IEEE Transactions on Power
Apparatus and Systems, Vol. 97, No. 6, 1978, pp. 2154-2164.

Garver, L.L.: “Transmission Network Estimation Using Linear Programming.” IEEE Trans-
actions on Power Apparatus and Systems, Vol. 89, No. 7, 1970, pp. 1688-1696.

Kaltenbach, J.-C., Preschon, J., and Gehrig, E.H.: “A Mathematical Optimization Technique
for the Expansion of Electric Power Transmission Systems.” IEEE Transactions on Power
Apparatus and Systems, Vol. 89, No. 1, 1970, pp. 113-119.

Tryfos, P.: “An Integer Programming Approach to the Apparel Sizing Problem.” Journal of
the Operational Research Society, Vol. 37, No. 10, 1986, pp. 1001-1006.

Cooper, M.W., and Farhangian, K.: “An Integer Programming Algorithm for Portfolio Selec-
tion With Fixed Charges.” Naval Research Logistics Quarterly, Vol. 29, No. I, 1982, pp.
147-150.

Mehta, R.P.: “Optimizing Returns With Stock Option Strategies.” Computers and Operations
Research, Vol. 9, No. 3, 1982, pp. 233-242.

Smith, B.M.: “IMPACS — A Bus Crew Scheduling System Using Integer Programming.”
Mathematical Programming, Vol. 42, 1988, pp. 181-187.

63

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

64

Dopazo, J.F., and Merrill, H.M.: “Optimal Generator Maintenance Scheduling Using Integer
Programming.” IEEE Transactions on Power Apparatus and Systems, Vol. 94, No. 5, 1975,
pp- 1537-1544.

Hooke, R., and Jeeves, T.A.: “A 'Direct Search’ Solution of Numerical and Statistical
Problems.” Journal of the Association of Computing Machines, Vol. 8, 1961, pp. 212-229.

Bazaraa, M., and Shetty, C.M.: “Nonlinear Programming.” John Wiley and Sons, New York,
1979, p. 275.

Gottfried, B.S., and Weisman, J.: “Introduction to Optimization Theory.” Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1973, p. 117.

Foulds, L.R.: “Optimization Techniques: An Introduction.” Springer-Verlag, New York,
1981, p. 335.

Wismer, D.A., and Chattergy, R.: “Introduction to Nonlinear Optimization.” North-Holland,
New York, 1978, p. 272.

Claycombe, W.W., and Sullivan, W.G.: “Foundation of Mathematical Programming.” Reston
Publishing Co., Inc., Reston, Virginia, 1975, pp. 194-199.

Ignizio, J.P.: “On the Establishment of Standards for Comparing Algorithm Performance.”
TIMS Interfaces, Vol. 2, No. 1, 1971, pp. 8-11.

McCabe, T.J.: “A Complexity Measure.” IEEE Transactions on Software Engineering, Vol.
SE-2, No. 4, 1976, pp. 308-320.

Lee, C.C., and Lee, D.T.: “A Simple On-Line Bin Packing Algorithm.” Journal of the
Association of Computing Machinery, Vol. 32, No. 3, 1985, pp. 562-572.

Crowder, H.P., Dembo, R.S., and Mulvey, J.M.: “Reporting Computational Experiments in
Mathematical Programming.” Mathematical Programming, Vol. 15, 1978, pp. 316-329.

Kronsjo, L.J.: “Algorithms: Their Complexity and Efficiency.” John Wiley and Sons, New
York, 1979, pp. 2-5, 131-136. :

Hooper, J.W., and Ranganath, H.: University of Alabama in Huntsville Computer Science
Department, verbal consultation with author and John N. Lovett, Jr., February 22, 1990.

Intel Corporation: “Microprocessor and Peripheral Handbook - Vol. 1,” 1988, pp. 3.45-3.54,
4.109-4.122.

Motorola, Inc.: MC68010 16-Bit Virtual Memory Microprocessor, 1982, pp. 7-8.

ﬂ\

7

BIBLIOGRAPHY

Adby, P.R., and Dempster, M.A.: “Introduction to Optimization Methods.” John Wiley and
Sons, New York, New York, 1974,

Avriel, M.: “Nonlinear Programming.” Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1976.

Balas, E.: “An Additive Algorithm for Solving Linear Programs With Zero-One Variables.”
Operations Research, Vol. 13, No. 4, 1965, pp. 517-548.

Balas, E.: “Duality in Discrete Programming: The Quadratic Case.” Management Science,
Vol. 16, 1969, pp. 14-32.

Balas, E., and Guignard, M.: “Branch and Bound/Implicit Enumeration.” Annals of Discrete
Mathematics, Vol. 5, 1979, pp. 185-191.

Balas, E., and Ho, A.: “Set Covering Algorithms Using Cutting Planes, Heuristics, and
Subgradient Optimization: A Computational Study.” Mathematical Programming, Vol. 12, 1980,
pp. 37-60.

Balinski, M.L.: “Integer Programming: Methods, Uses, and Computation.” Management
Science, Vol. 12, No. 3, 1965, pp. 253-315. '

Bartholdi, J.J.: *A Guaranteed-Accuracy Round-Off Algorithm for Cyclic Scheduling and
Set Covering.” Operations Research, Vol. 29, No. 3, 1981, pp. 501-511.

Baum, S., and Trotter, L.E.: “Finite Checkability for Integer Rounding Properties in
Combinatorial Programming Problems.” Mathematical Programming, Vol. 22, 1982, pp. 141-147.

Bazaraa, M., and Shetty, C.M.: “Nonlinear Programming.” John Wiley and Sons, New
York, New York, 1979.

Beale, E.M.: “Branch-and-Bound Methods for Mathematical Programming Systems.” Annals
of Discrete Mathematics, Vol. 5, 1979, pp. 201-219.

Beale, E.M.: “Integer Programming.” Computational Mathematical Programming, Vol. 15,
1985, pp. 1-53. '

Beale, E.M.: “The Evolution of Mathematical Programming Systems.” Journal of Operations
Research Society, Vol. 36, No. 5, 1985, pp. 357-366.

Benichou, M., Gauthier, J.M., Hentges, G., and Ribiere, G.: “The Efficient Solution of
Large-Scale Linear Programming Problems — Some Algorithms, Techniques, and Computational
Results.” Mathematical Programming, Vol. 13, 1977, pp. 280-322.

Boffey, T.B., and Green, J.R.: “Design of Electricity Supply Networks.” Discrete Applied
Mathematics, Vol. 5, 1983, pp. 25-38.

Bradley, G.H., Wahi, P.N.: “An Algorithm for Integer Linear Programming: A Combined
Algebraic and Enumeration Approach.” Operations Research, Vol. 21, No. 1, 1973, pp. 45-60.

Budnick, F.S., Mojena, R., and Vollmann, T.: “Principles of Operations Research for
Management.” Richard D. Irwin, Inc., Homewood, Illinois, 1977.

Bunday, B.D.: “BASIC Optimization Methods.” Edward Arnold Publishing, Baltimore,
Maryland, 1984.

Bunday, B.D., and Garside, G.R.: “Optimization Methods in PASCAL.” Edward Amold
Publishing, Baltimore, Maryland, 1987.

Cabot, A.V., and Erenguc, S.S.: “A Branch and Bound Algorithm for Solving a Class of
Nonlinear Integer Programming Problems.” Naval Research Logistics Quarterly, Vol. 33, 1986, pp.
559-567.

65

Claycombe, W.W., and Sullivan, W.G.: “Foundations of Mathematical Programming.”
Reston Publishing Co., Inc., Reston, Virginia, 1975.

Conley, W.: “Computer Optimization Techniques.” Petrocelli Books, Inc., New York, New
York, 1984.

Cooper, L., and Cooper, M.W.: “All-Integer Linear Programming - A New Approach Via
Dynamic Programming.” Naval Research Logistics Quarterly, Vol. 25, No. 1, 1978, pp. 415-429.

Cooper, M.W.: “A Survey of Methods for Pure Nonlinear Integer Programming.”
Management Science, Vol. 27, No. 3, 1981, pp. 353-361.

Cooper, M.W.: “Nonlinear Integer Programming for Various Forms of Constraints.” Naval
Research Logistics Quarterly, Vol. 29, No. 4, 1982, pp. 585-592.

Cooper, M.W., and Farhangian, K.: “An Integer Programming Algorithm for Portfolio
Selection With Fixed Charges.” Naval Research Logistics Quarterly, Vol. 29, No. 1, 1982, pp.
147-150.

Crowder, H.P., Dembo, R.S., and Mulvey, J.M.: “Reporting Computational Experiments in
Mathematical Programming.” Mathematical Programming, Vol. 15, 1978, pp. 316-329.

Dakin, R.T.: “A Tree Search for Mixed Integer Programming Problems.” The Computer Jo-
urnal, Vol. 8, 1965, pp. 250-255.

Dillon, T.S., and Edwin, K.W.: “Integer Programming Approach to the Problem of Optimal
Unit Commitment With Probabilistic Reserve Determination.” IEEE Transactions on Power
Apparatus and Systems, Vol. 97, No. 6, 1978, pp. 2154-2164.

Driebeck, N.: “An Algorithm for the Solution of Mixed Integer Programming Problems.”
Management Science, Vol. 12, No. 7, 1966, pp. 576-587.

Dopazo, J.F., and Merrill, H.M.: “Optimal Generator Maintenance Scheduling Using
Integer Programming.” IEEE Transactions on Power Apparatus and Systems, Vol. 94, No. 5,

1975, pp. 1537-1544.

Echols, R.E., and Cooper, L.: “Solution of Integer Linear Programming Problems by Direct
Search.” Journal of the Association for Computing Machinery, Vol. 15, No. I, 1968, pp. 75-84.

Ecker, J.G., and Kupferschmid, M.: “Introduction to Operations Research.”™ John Wiley and
Sons, New York, New York, 1988.

Edler, J., Nikiforuk, P.N., and Tinker, E.B.: “A Comparison of the Performance Tech-
niques for Direct, On-Line Optimization.” The Canadian Journal of Chemical Engineering, Vol.

48, 1970, pp. 432-440.

Evans, J.R.: “Structural Analysis of Local Search Heuristics in Combinatorial Optimiza-
tion.” Computers and Operations Research, Vol. 14, No. 6, 1987, pp. 465-477.

Faaland, B.H., and Hillier, F.S.: “Interior Methods for Heuristic Integer Programming
Procedures.” Operations Research, Vol. 27, No. 6, 1979, pp. 1069-1087.

Fogiel, M.: “The Operations Research Problem Solver.” Research and Education Associa-
tion, New York, New York, 1987.

Foulds, L.R.: “Optimization Techniques: An Introduction.” Springer-Verlag, New York,
New York, 1981.

Gabbani, D., and Magazine, M.: “An Iterative Heuristic Approach for Multi-Objective
Integer-Programming Problems.” Journal of the Operations Research Society, Vol. 37, No. 3,

1986, pp. 285-291.

Garfinkel, R.S., and Nemhauser, G.L.: “Integer Programming.” John Wiley and Sons, Inc.,
New York, New York, 1972. :

Garver, L.L.: “Transmission Network Estimation Using Linear Programming.” IEEE Trans-
actions on Power Apparatus and Systems, Vol. 89, No. 7, 1970, pp. 1688-1696.

66

Geoffrion, A.M.: “An Improved Implicit Enumeration Approach for Integer Programming.”
Operations Research, Vol. 17, 1969, pp. 437-454.

Geoffrion, A.M., and Marsten, R.E.: “Integer Programming Algorithms: A Framework and
State-of-the-Art Survey.” Management Science, Vol. 18, No. 9, 1972, pp. 465-491.

Giglio, R.J., and Wagner, H.M.: “Approximate Solutions to the Three-Machine Scheduling
Problem.”™ Operations Research, Vol. 12, No. 3, 1964, pp. 305-324.

Glover, F.: A Multi-Phase Dual Algorithm for the Zero-One Integer Programming
Problem.™ Operations Research, Vol. 13, No. 6, 1965, pp, 879-929.

Glover, F.: “Improved Linear Integer Programming Formulations of Nonlinear Integer
Problems.” Management Science, Vol. 22, No. 4, 1975, pp. 455-460.

Glover, F.: "Reducing the Size of Some IP Formulations by Substitution.” Operational
Research Quarterly, Vol. 27, No. 1, 1976, pp. 261-263.

Gomory, R.E.: “An Algorithm for Integer Solutions to Linear Programs.” Recent Advances
in Mathematical Programming, Graves and Wolfe, eds., McGraw-Hill, New York, New York,
1963.

Gondran, M., and Simeone, B.: “Cutting Planes.” Annals of Discrete Mathematics, Vol. 5,
1979, pp. 193-194.

Gottfried, B.S., and Weisman, J.: “Introduction to Optimization Theory.” Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1973.

Greenberg, H.J.: “Design and Implementation of Optimization Software.” Sijthoff and
Noordhoff, The Netherlands, 1978.

Gupta, O.K., and Ravindran, A.: “Branch and Bound Experiments in Convex Nonlinear
Integer Programming.”™ Management Science, Vol. 31, No. 12, 1985, pp. 1533-1546.

Healy, W.C.: “Multiple Choice Programming.” Operations Research, Vol. 12, 1964, pp.
122—-138.

Hillier, F.S.: “Efficient Heuristic Procedures for Integer Linear Programming With an
Interior.” Operations Research, Vol. 17, 1969. pp. 600-637. .

Hillier, F.S., and Lieberman, G.J.: “Introduction to Operations Research.” Holden-Day,
Inc., Oakland, California, 1980.

Himmelblau: “Applied Nonlinear Programming.” McGraw-Hill Book Co., New York, New
York, 1972.

Hooke. R.. and Jeeves, T.A.: “A 'Direct Search’™ Solution of Numerical and Statistical
Problems.™ Journal of the Association of Computing Machines, Vol. 8, 1961, pp. 212-229.

Hooper, J.W., and Ranganath, H.: University of Alabama in Huntsville Computer Science
Department, verbal consultation with author and J.N. Lovett, Jr., February 22, 1990.

Hu, T.C.: "Integer Programming and Network Flows.” Addison-Wesley Publishing Co.,
Reading, Massachusetts, 1970.

Ignizio, J.P.: “On the Establishment of Standards for Comparing Algorithm Performance.”
TIMS Interfaces, Vol. 2, No. I, 1971, pp. 8-11.

Intel Corporation: “Microprocessor and Peripheral Handbook, Vol. 1.” Intel Corp., Santa
Clara, California, 1988.

Jacoby, S.L., Kawalik, J.S., and Pizzo, J.R.: “Iterative Methods for Nonlinear Optimization
Problems.” Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1972.

Jeroslow, R.G.: “There Cannot Be Any Algorithm for Integer Programming with Quadratic
Constraints.” Operations Research, Vol. 21, No. 1, 1973, pp. 221-224.

Kabe, D.G.: “On Solving Integér Programming Problems.” The Journal of Industrial Mathe-
matics Society, Vol. 32, No. 2, 1982, pp. 103-123.

Kaltenbach, J.-C., Peschon, J., and Gehrig, E.H.: “A Mathematical Optimization Technique
for the Expansion of Electric Power Transmission Systems.” IEEE Transactions on Power
Apparatus and Systems, Vol. 89, No. I, 1970, pp. 113-119.

Kennedy, D.: “Some Branch and Bound Tecchniques for Nonlinear Optimization.” Mathe-
matical Programming, Vol. 42, 1988, pp. 147-157.

Kochenberger, G.A., McCarl, B.A., and Wyman, F.P.: “A Heuristic for General Integer
Programming.” Decision Sciences, Vol. 5, 1974, pp. 3644,

Korner, F.: “A New Branching Rule for the Branch and Bound Algorithm for Solving Non-
linear Integer Programming Problems.” BIT, Vol. 28, No. 3, 1988, pp. 701-708.

Kreuzberger, H.: “Numerische Erfahrungen mit einem heuristischen verfahren zur Losung
ganzzahliger linearer optimierungsprobleme.” Electronishe Daten-verarbeitung, Heft 7/1970, Seiten
289-306.

Kronsjé, L.1.: “Algorithms: Their Complexity and Efficiency.” John Wiley and Sons, New
York, New York, 1979.

Kunzi, H.P., Tzschach, H.G., and Zehnder, C.A.: “Numerical Methods of Mathematical
Optimization.” Academic Press, New York, New York, 1971,

Land, A., and Doig, A.: “An Automatic Method for Solving Discrete Programming
Problems.” Econometrica, Vol. 28, No. 3, 1960, pp. 497-520.

Lau, H.T.: “Combinatorial Heuristic Algorithms With FORTRAN.” Springer-Verlag, New
York, New York, 1986.

Lawler, E.L., and Bell, M.D.: “A Method for Solving Discrete Optimization Problems.”
Operations Research, Vol. 14, 1966, pp. 1098-1112.

Lawrence, J.P., and Steiglitz, K.: “Randomized Pattern Search.” IEEE Transactions on
Computers, April 1972, pp. 382-385.

Lee, C.C., and Lee, D.T.: “A Simple On-Line Bin Packing Algorithm.” Journal of the
Association of Computing Machinery, Vol. 32, No. 3, 1985, pp. 502-572.

Lemke, C., and Spielberg, K.: “Direct Search Algorithm for Zero-One and Mixed Integer
Programming.” Operations Research, Vol. 15, No. 5, 1967, pp. 892-914.

Lev, B., and Weiss, H.J.: “Introduction to Mathematical Programming.” North Holland,
New York, New York, 1982.

Lin, B.W., and Rardin, R.L.: “Controlled Experimental Design for Statistical Comparison
of Integer Programming Algorithms.” Management Science, Vol. 25, No. 12, 1980, pp.
1258-1271.

Little, J.K., Murty, D.S., and Karel, C.: “An Algorithm for the Traveling Salesman
Problem.” Operations Research, Vol. 11, No. 5, 1963, pp. 892-914.

Llewellyn, R.W.: “Linear Programming.” Holt, Rinehart, and Winston, Inc., New York,
New York, 1964,

Markowitz, H.M., and Manne, A.S.: “On the Solution of Discrete Programming Problems.”
Econometrica, Vol. 25, No. 1, 1957, pp. 84-110.

Marsten, R.E., and Morin, T.L.: “A Hybrid Approach to Discrete Mathematical Program-
ming.” Mathematical Programming, Vol. 14, 1978, pp. 21-40.

McBride, R.D., and Yormark, J.S.: “An Implicit Enumeration Algorithm for Quadratic
Integer Programming.” Management Science, Vol. 26, No. 3, 1980, pp. 282-296.

McCabe, T.J.: “A Complexity Measure.” IEEE Transactions on Software Engineering, Vol.
SE-2, No. 4, 1976, pp. 308-320.

McMillan, C.: “Mathematical Programming.” John Wiley and Sons, Inc., New York, New
York, 1975.

68

Pl

ﬂl

Mehta, R.P.: “Optimizing Returns With Stock Option Strategies.” Computers and Opera-
tions Research, Vol. 9, No. 3, 1982, pp. 233-242.

Motorola, Inc.: “MC68010 16-Bit Virtual Memory Microprocessor.” Motorola, Inc., Austin,
Texas, 1982.

Nauss, R.M.: “On the Use of Internal Rate of Return in Linear and Integer Programming.”
Operations Research Letters, Vol. 7, No. 6, 1988, pp. 285-289.

Nembhauser, G.L., and Wolsey, L.A.: “Integer and Combinatorial Optimization.” John
Wiley and Sons, Inc., New York, New York, 1988.

Onyekwelu, D.C.: “Computational Viability of a Constraint Aggregation Scheme for Integer
Linear Programming Problems.” Operations Research, Vol. 31, No. 4, 1983, pp. 795-801.

Ozan, T.M.: “Applied Mathematical Programming for Production and Engineering
Management.” Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1986.

Papadimitriou, C.H., and Steiglitz, K.: “Combinatorial Optimization.” Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1982.

Parker, R.G., and Rardin, R.L.: “Discrete Optimization.” Academic Press, Inc., New York,
New York, 1988.

Pearl, J.: “Knowledge Versus Search: A Quantitative Analysis Using A*.” Artificial Intelli-
gence, Vol. 20, 1983, pp. 1-13.

Pegden, C.D.. and Petersen, C.C.: “An Algorithm for Solving Integer Programming
Problems With Separable Nonlinear Objective Functions.”™ Naval Research Logistics Quarterly, Vol.
26, 1979, pp. 595-609.

Rao, S.S.: “Optimization: Theory and Applications.” John Wiley and Sons, New York,
New York, 1984. .

Reiter, S., and Sherman, G.: “Discrete Optimizing.” Journal of the Society for Industrial
and Applied Mathematics, Vol. 13, No. 3, 1965, pp. 864-889.

Reiter, S., and Rice, D.B.: "Discrete Optimizing Solution Procedures for Linear and Non-
linear Integer Programming Problems.”™ Management Science, Vol. 12, No. 11, 1966, pp.
829-850.

Roth, R.H.: “An Approach to Solving Linear Discrete Optimization Problems.” Journal of
the Association for Computing Machinery, Vol. 17, No. 2, 1970, pp. 303-313.

Salkin, H.M.: “Integer Programming.” Addison-Wesley Publishing Co., Reading,
Massachusetts, 1975.

Sharma, J., and Venkatsewaran, K.V.: “A Direct Method for Maximizing the System Reli-
ability.” IEEE Transactions on Reliability, Vol. R-20, No. 4, 1971, pp. 256-259.

Sherali, H.D., Staschus, K., and Haucuz, J.M.: “An Integer Programming Approach and
Implementation for an Electric Utility Capacity Planning Problem With Renewable Energy
Sources.” Management Science, Vol. 33, No. 7, 1987, pp. 831-847.

Smith, B.M.: “IMPACS - A Bus Crew Scheduling System Using Integer Programming.”
Mathematical Programming, Vol. 42, 1988, pp. 181-187.

Song, H.: “Optimum Decision Tree Development Using Entropy.” Ph.D. Dissertation,
University of Alabama in Huntsville, 1989.

Spielberg, K.: “Enumerative Methods in Integer Programming.” Annals of Discrete Mathe-
matics, Vol. 5, 1979, pp. 139-183.

Sweeney, D.J., and Murphy, R.A.: “A Method of Decomposition for Integer Programs.”
Operations Research, Vol. 27, No. 6, 1979, pp. 1128-1141.

Syslo, M.M., Deo, N., and Kowalik, J.S.: “Discrete Optimization Algorithms.” Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1983.

69

Taha, H.A.: “Operations Research: An Introduction.” MacMillan Publishing Co., New
York, New York, 1987.

Taha, H.A.: “Integer Programming — Theory, Applications, and Computations.” Academic
Press, New York, New York, 1975.

Tillman, F.A., and Littschwager, J.M.: “Integer Programming Formulation of Constrained
Reliability Problems.” Management Science, Vol. 13, No. 11, 1967, pp. 887-899.

Tomlin, J.A.: “An Improved Branch-and-Bound Method for Integer Programming.” Opera-
tions Research, Vol. 19, No. 4, 1971, pp. 1070-1075.

Trauth, C.A., and Woolsey, R.E.: “Integer Linear Programming: A Study in Computational
Efficiency.” Management Science, Vol. 15, No. 9, 1969, pp. 481-493.

Tryfos, P.: “An Integer Programming Approach to the Apparel Sizing Problem.” Journal of
the Operational Research Society, Vol. 37, No. 10, 1986, pp. 1001-1006.

Volkovich, O.V., Roshchin, V.A., and Sergienko, 1.V.: “Models and Methods of Solution
of Quadratic Integer Programming Problems.” Cybernetics, Vol. 23, No. 3, 1987, pp. 289-305.

Wagner, H.M., Giglio, R.J., and Glaser, R.G.: “Preventive Maintenance Scheduling by
Mathematical Programming.” Management Science, Vol. 10, No. 2, 1964, pp. 316-334.

Wismer, D.A., and Chattergy, R.: “Introduction to Nonlinear Optimization.” North-Holland,
New York, New York, 1978.

Wood, C.F.: “Application of ‘Direct Search’ to the Solution of Engineering Problems.”
Westinghouse Resources Laboratory Science Paper, 6-41210-1-P1, 1960.

Young, R.D.: “A Simplified Primal (All-Integer) Integer Programming Algorithm.” Opera-
tions Research, Vol. 16, 1968, pp. 750-782.

Zionts, S.: “Linear and Integer Programming.” Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1974.

70

f

/!

APPENDIX A

FRACTIONAL CUT AND BRANCH-AND-BOUND EXAMPLES

71

72

The first requirement of using a fractional cut algo-
rithm is that all the coefficients and the RHS constant of
each one of the constraints must be an integer. For exam-
ple, the constraint

1/2xy + 2/3x5 5 7/3
must be transformed into 3%; + 4x, = 14 so that no
fractions are present. This is imposed due to the algorithm
requirement that both regular and slack variables must be
integer values.

The next step is to solve the problem as a regular lin-
ear programming problem. Once this is done, then we have a

final optimal tableau for the linear program in the follow-

ing form:
Basis l X] ++++ Xj oovs Ry W] ..es W5 ..., Wy l RHS
Xy 1 ... 0 .o 0 agliiiegd . ag? B1
x; 0 1 0 oyl a;d a;® B
i i i i i
x 0 0 1 agl a3 a D B
m . m m m m
Zy | o 0 0 ¢ c cq | Bo
The variables x; (i=1,2,...,m) represent the basic var-
iables and the variables W (j=1,2,...,n) represent the non-
basic variables of the optimal solution. B8; (i=1,2,...,m)

are the right hand side values (solutions) to the

””

”

corresponding variables in the "Basis" column. Bg 1is the
present value of the objective function. The Zj row con-
tains the sensitivity coefficients for each of the varia-
bles. The values aij (i=1,2,...,m and j=1,2,...,n) are the
slack variable coefficients of the constraints.

Let Bi = [Bi] + fi’ aij = [aij] + fij

where N = [a] is the largest integer such that N = a.
Therefore, 0<fi<l and Osfij<l; In other words, fi is a
positive fraction and fij is a nonnegative fraction.

Consider the example

a = 3/2 [a] = 1 £; = 1/2
a = '7/3 [a] = -3 fi = 2/3
The source row will be
n n
fi ‘.z fijwj = Xy - [Bi] +'Z [ai]wj
]=1 J=l

Since Xj, [Bi], [ai] and wy are integers, the RHS must also

be integer as well as the LHS,

n
or £. - £;,.wy < O

We have a CUT; as a nonnegative slack variable which by
definition must be an integer. This constraint equation is
the fractional cut.

CUT; = & f54wy - £ . (al)

73

74

The algorithm is called a fractional method because all the
nonzero coefficients of the generated cut are less than 1.

Two major drawbacks to the fractional method are

1. Roundoff errors may yield incorrect optimal solu-
tions.
2. All solutions are infeasible (noninteger) until

the optimal is reached.

The above fractional cut equation can be utilized for every
row in the tableau. The strongest cut or largest f; value
is generally used. This is determined by operating rules

such as the choice of the CUT; having

£
max(fi) or max()

Lastly, we apply the dual simplex method to obtain an
optimal solution.

The following stopping rule for Fractional Cut is em-
ployed: If the new solution is an integer one, stop. If
not, construct new CUT; for the remaining rows and apply the
best one to a new row and repeat the algorithm. The follow-
ing example from Ozan [16] illustrates the fractional cut

procedure:

Maximize 2Z = §(x),Xp,X3) = 2x)] + X3 + 2x3

Subject to 2xl + X9+ X3 s 9
X1 + 282 + 3!3 < 8

X1, Xp, X3 2 0 and integer

Step 1. Solve for optimal (noninteger) solution.

I. l 2 l 1 l 2 l 0 l 0 ‘ 0
Basis I X1 l X9 l X3 l sy l So l Sol

0 s I 2 l 1 l 1 l 1 I 0 l 9

0 s, | 1 2]@10 1 8

Z I -2 -1 J -2 J 0 0 0

II. 2 1 1 2 0 0 0
Basis Xq Xy X3 8y S5 Sdl

0 s1 I (:)1 1/3 I 0 I 1 1-1/3 l 19/3
2 Xq 1/3 2/3 1 0 1/3 8/3
Z -4/3 1/3 0 0 2/3 16/3

III. 2 1 2 0 0 0
Basis Xy X, X3 l Sy S5 Sol
2 X1 J 1 J 1/5 l 0 J 3/541—1/5 ' 19/5
2 X4 0 3/5 | 1 -1/5 2/5 7/5
i
A 0 3/5 I 0 4/5 2/5 52/5
Therefore, the optimal non-integer solution is x1=19/5,

XZ=0, X3=7/5, Z=52/5.

Now we apply the cutting procedure.

X] row==> fy = 19/5
1

3 + 4/5 (fy = 4/5)

a;* =1/5 =0+ 1/5 (f}; = 1/5)
012 = 3/5 =0 + 3/5 (f12 = 3/5)
a;3 = -1/5 = -1 + 4/5 (f13 = 4/5)

Therefore, CUT; = 1/5x, + 3/5s; + 4/5s, - 4/5 ==> CUT; -

75

76

1/5X2 - 3/581 - 4/552 = '4/5

X3 rows=> @y = 7/5 = 1 + 2/5 (fy = 2/5)

a,l = 3/5 =0+ 3/5 (fy = 3/5)
@ay2 = -1/5 = -1 + 4/5 (f95 = 4/5)
ay3 = 2/5 =0+ 2/5 (fp3 = 2/5)

Therefore, CUT, = 3/5x2 + 4/551 + 2/552 - 2/5 ==> CUT, -
3/5x, - 4/58; - 2/5s, = -2/5

Max(f;) = max(4/5,2/5) = 4/5. Therefore, use x; row cut
values and apply Dual Simplex.

Therefore, for CUT;, we have

[2] *]2f]°ofo] ©°|

Basis x) Xo X3 sy S92 l CUT; l Sol

2 3 1 1/5 0 3/ |-1/5 0 I 19/5
2 X3 l 0 l 3/5 L 1 l 1/5 2/5 l o | 7/S

cury | o |-1/5 | o0 |- -3/s | fi}§ 1

|
A 1 0] 3/54] 0 I 4/5 l 2/5 0 1 52/5

Ratio | _ |_3/5 | . |_4/5 |_2/5 i}
“1/5 Z3/5 |S4/5
-3 -4/3 |-1/2
2 1 2 0] 0 0]
Basis X3 X9 1 X3 1 sy l 527 cuTy Sol
2 xy | 1 |14 O |3/4| 0 | -1/4| 4
2 xy | 0 | 2| 1 |-W2| o | 1/2| 1
0 sy | O | L4| 0 |34 L |-5/4] 1
z | o |y2| 0 |[1/z2] 0 1/2 | 10

M

/!

All positive integers are obtained, so the optimal solution

is reached. Hence, the solution in integer values for the

problem is x; = 4, x5 = 0, x3 =1 and Z = 10.

Branch and Bound Example
Using the same continuous optimal solution we obtained

from our Fractional Cut example, we have

Maximize 2 = f(xy3,%9,%3) = 2%) + %y + 2x3

Subject to 2xy) + x5 + X3 = 9
Xl + 2XZ < 8

-+
[#3)
E]
w

X1, X9, X3 2 0 and integer

xy = 19/5, x5 = 0, x3 = 7/5, Z = 52/5
Since 3] and X3 are fractional, either can be selected to

generate subproblems.

Let us use x; ==> either x1,5 3 or x3 2 4.

(1)

z = 52/5
Xy = 19/5, x3 = 1/5

(3) (2)

X1

(2) Put X = 4 into the optimal continuous

tableau ==> -X) < 4.

78

(2)

Basis J X1 1 X5 l x3gl s3 l S5 l S3 l Sol
2 x I 1 1 1/5 l 0 l 3/5 |-1/5 1] l 19/5
ST R U0 L Rl O W i
0 s3 |-1] o | o 0 0 1 | -4
r'A 0 3/5 l 0 4/5 2/5 0 52/5
Applying Dual Simplex,
l 2 1 2 l] l 0 I 0 I
Basis] X) Xy X3 s] P] s3 | Sol
2 Xy l 1 1 1/5 0 3/5 -1/5] 0 19/5
2 x3 | 0 |3/s| 1 |-1/5| 2/5] 0 | /5
0 s3 1 0 J 1/s 0 3/5 -1/5 1 J -1/S
Z l 0 J 3/5 0 4/5 2/5 0 ! 52/5
Ratio | - | - | - | - | -2 | - |
I L B L B B
Basis X X, X3 l s) l s7 s3 | Sol
2 x 1] o0 0 o | o | -1 4
2 xg 0 1 1|1 0 2 | 1
0 S5 1 0 -1 l 0 -3 1 -5 1
4 0 AJ 1 0 2 0 2 10
Ratio | - | - | - | - | - | - |
Optimal and Feasible: x; = 4, x3 =1, x5 =0, Z =10
Put Xy =3 into fhe tableau.

(3)

|21 * J2f]° |°

| ° |

Basis l ' 31 1 X9 l X3 1 sy l S5 AJ Sj 17801
2 X1 l 1 I 1/5 l 0 l 3/5 I-l/S l 0 J 19/5
2 X3 l 0 3/8 1 41-1/5 2/5 0 7/5
0 s3 l/i 0 l 0 [1/s oF;] 0 [Las) 0 [1/s] 1[1 | 3[4/
Z I 0 3/5 0 [4/5] 2/5 0 52/5
Ratio | - | - |- | -3/4| - | - |

new s row = (1,0,0,0,0,1,3) - (1)(1,1/5,0,3/5,-1/5,0,19/5)

| 2] 2] ©°of ofeo]
Basis J X1 l X7 l X3 I sy l s? J s3 l Sol
2 Xy 1 0 l 0 l 0 l 0 I 1 I 3
2 X3 l 0 l 2/3 1 0 1/3 |-1/3] 5/3
0 3y 0 1/3 0 1 -1/3 |-5/3 | 4/3
A l 0 l 1/3 l 0 1 0 l 2/3 J 4/3 J 28/3
Optimal but noninteger -- Branch again!
(3)
zZ = 28/3
XI = 3, X3 = 5/3
]
(s) (4)
x3 = 1 X3 2 2
(4) x3 2 2 ==> -X3 < -2

79

80

Basis l X3 l X5 l X3 l s l s, 1 s3 l s4 l 8ol
2 x; 1 0 o | o | o 1 0 3
2 x3 0 2/3 1 l 0 1/3 |-1/3 0 /3
0 s l 0 l 1/3 1 0 1 1 l -1/3]-5/3 0 4/3

0 s4 <1’g o | O2s3]-1}, 0l o 0l1/3| Of-1/af 1f '2F;3
zZ 1 0 1/3 0 0 2/3 J 4/3 0 128/3
Ratio | - - - - -] -4 -

New 34 == (0,01-110:0:0111-2)-
(-l)(012/3:11011/31-1/310r5/3)

= (0,2/3,0,0,1/3,-1/3,1,-1/3)

Basis | x; | x, | x4 sy | sp| s3| 34| 80l
2 x 1 2 0 o | 1 o | 3 2
2 x3 | 0o | 0o | 1 o | o | o J-1 | 2
0 sy | 0 J-3 | 0| 1] -2 | 0 |-5 3
0 s4 o | -2 0 o | -1 1 | -3 1

Z 0 3 0 o | 2 0 4 8

Feasible but x4 < x5 @ (2).
Therefore, best is still x) = 4, x3 = l, xp =0, Z = 10.
Using Branch (5) x3 < 1 and using (3) as initial tab-

leau we have

Basis] Xy l X l X3 l o l S5 l Sjy 1 S4 l Sol
2 xy | 1 o)o) o] o] 1] 0] 3
2 xgq I 0 I 2/3 I 1 1 0 l 1/3]-1/3 1 0 , 5/3
0 s I 0 l 1/3 0 1 -1/3 1-5/3 0 AJ 4/3
0 54‘1’2 0 L 0 2/31 1, of o 0/.1/3] Of,s] L[1] 1fars

Z 0] 1/3 0 0 2/3 4/3 0]28/3

Ratio - :%%% - - —:%%% - -

New s, = (0,0,1,0,0,0,1,1)-(1)(0,2/3,1,0,1/3,-1/3,0,5/3)

Basis X Xq X3 l s, S, S3 s4 | Sol
2 x4 1 0 0 l 0 0 1 0 3
2 x3 | 0 | 0o | 1 | o] o] o] 1|1
0 s 0 0 0 l 1 -1/2 |-3/2 1-1/2 1
1 x, l 0 l 1 l 0 l 0 I 1/2 |-1/2 1-3/2 1

Z I 0 ’ 0 J] I 0 l 1/2 l 3/2 1 1/2 j 9

Feasible solution Xy = 3, Xy = 1, x3 = 1, 2 =9

But it still does not improve 2z = 10, x; = 4, xp = O,
X3 = 1. Therefore, optimal and Best Solution is Xy = 4,

=0, x3 =1, Z = 10 (found with Branch (2)).

81

!

APPENDIX B

IESIP PASCAL COMPUTER CODE

PRECEDING PAGE BLANK NOT FILMED

83

84

PROGRAM 1ESIP;

CONST

{ The maximum number of variables plus 3. }
MAXVAR = 33;

TYPE

{ Datarec will hold a node and pointers to the
and previous node on the linked list. }

Recptr = "Datarec;
Datarec = Record
Value : Array (l..MAXVAR] of Real;
Previous : Recptr;
Next : Recptr
END;
Inrec = Record
Value : Array [l..80) of Char:
END;
Listptr = “Listrec;

next

{ Listrec will hold pointers, one to a node entry, and
one each to the next and previous elements on the

linked list. }

Listrec = Record
Value : Recptr;
Previous Listptr;
Next : Listptr;

END;

VAR
{Boolean variables}

Chkpar ! Boolean;

Cmderr : Boolean;

patafile : Boolean;

Dispex : Boolean;

Finish : Boolean;

Maxmin : Boolean;

Oddeven Boolean;

opflag : Boolean;

Parserr Boolean;

Parfound : Boolean;
shortcut : Boolean;

Stype : Boolean;
{Integer variables}
Calnum : Integer;
Numex : Integer;
Numline Integer;

Numofvar : Integer;
{Real variables}
Numadd : Real;

Numcomp : Real;
Nummult : Real;
Rdadd : Real;
Rdcomp : Real;
Rdmult : Real;
Valex : Real;

{string and Char variables}
Filename : String[32];

M

”

Pilevar : Text;
Helpvar : Text;
Online : String(80];
Yesno : Char;
{Pointers variables}
Bestsol : Recptr;
Bestlist : Listptr;
Confun ! Recptr;
Consol ¢ Recptr;
Currcon : Recptr;
Datafun : Recptr;
Expfun : Recptr;
Listelem : Listptr;
Listone : Listptr;
Listtwo Listptr;
Lstelem Listptr;
Opfun : Recptr;
Parlist : Listptr;

Parseline: “Inrec;
Startfun :@: Recptr;

PROCEDURE Writefun (Func : Recptr);

{ Write the node with the coefficients followed by the
variable x1 ... xN. This procedure is used only to
print the objective and constraint functions. 1If
printing a constraint function then print the operand
and the constraint value. }

VAR

I : Integer;

BEGIN

For I := 1 to Numofvar Do

BEGIN
1f (Func”.Value[I] >= 0) then Write('+'):
Write(Func™.Value{I]:0:2);
Write(' X');
Write(I);
Write(' ');

END;

If Not Opflag then

BEGIN
Case Trunc(Func”.vValue[MAXVAR-1]) of

: Write('= ');

: Write('"= .

: Write('<

: Write('<=

: Write('>

: Write('>=

~e

-
L B

A Nd W
N N Se N N s
-e

~-e

END;
Write(Func”.Value
END;
Writeln(' ')
END;

MAXVAR]:0:2)

85

86

PROCEDURE Writecon (Func : Recptr);

{ Write the rounded continuous solution in the form
(x1, x2, ..., xN). This procedure is used only to
print the rounded continuous solution. }

VAR

I ¢ Integer;

BEGIN

Write('(');

For I := 1 to Numofvar -1 Do

BEGIN
Write(Trunc(Func”.vValue[I]));
Write(', ")

END;

Write(Trunc(Func”.Value[Numofvar])):

Writeln(')"')

End;

PROCEDURE Writeeq (Func : Recptr);

{ Write the node in the form (x1, x2, ..., xN) = value.
In the case where the node did not pass the
constraint's check, the value will be set to C.F. }

VAR
I : Integer;

BEGIN
Write('(
Por 1 :=
BEGIN

Write(Trunc(Func”.Value[I]));
Write(', ')
END;
Write(Trunc(Func”.Value[Numofvar]));
Write(') = ');
1f (Trunc(Func”.Value[MAXVAR-2]) = 1) then
Writeln('C.F."')
else
Writeln(Func”.Value[MAXVAR]:0:3);

[]
)
1 to Numofvar -1 Do

END;

PROCEDURE Printproblem;

{ Display the initial problem to the used in the form of
problem type, number of variables, objective function,
constraint function(s), and rounded continuous
solution. This display will occur if the initial
information comes from a data file, or at the users
request at the end of the program. }

BEGIN
Writeln(' ');

If Maxmin then

Writeln('Maximization problem')
else

Writeln('Minimization problem'):
Writeln('Number of variables = ', Numofvar);
Writeln(' ');
Writeln('Objective function:'):;

opflag := True;

Writefun(Opfun);

Writeln(' '):

Writeln('Constraint function(s):');
Opflag := False;

Datafun := Confun;

While Not (Datafun = Nil) Do

BEGIN
Writefun(Datafun);
Datafun := Datafun”.Next
END;

Writeln(' ');
Writeln('Continuous solution rounded value:');
Writecon(Consol);
Writeln(' ');
END;

PROCEDURE Openhelp;

BEGIN

{ Open the help file just in case the user needs it. }
Assign(Helpvar, 'IESIP.HLP');
Reset (Helpvar);

END;

PROCEDURE Readhelp(num : Integer);

{ Read the help file and look for the help section for a
given number. The help file is a simple ASCII text
file with a record #num that will denote the start of
the help section for that number. The help section
will then run until another #num record is
encountered. }

VAR
Canprint : Boolean;
Done : Boolean;
numon : Integer;
BEGIN
Reset (Helpvar);
Done := False; Canprint := False;
While Not Done Do
BEGIN

Read(Helpvar, Yesno);
If (Yesno = '#') then

BEGIN
I1f Canprint then Done := True;
Canprint := False;
Readln(Helpvar, numon);
If (numon = num) then Canprint := True;
END
Else
BEGIN

Readln(Helpvar, Online);
If Canprint then
BEGIN

Write(Yesno);

87

88

Writeln(Online);

END;
END;
Done := Done or Eof(Helpvar):
END;
END;
PROCEDURE Endprogram;
LABEL
1;
VAR
Compsc : Real;
BEGIN

{ If we have a data file open then close it. Ask the
user if they wish to have the problem restated, if so
then display the initial problem. Then list the best
solution(s) found, and give computational results. }

If Datafile then
Close(Filevar);
Writeln(' ');

1: Writeln('Do you wish to have the problem restated? ');
Write('[yles/[n]o/[h]lelp default = no ');
Readln(Yesno);
1f ((Yesno = 'y')or(Yesno = 'Y')) then

Printproblem
else If ((Yesno = 'h')or(Yesno = 'H')) then
BEGIN
Readhelp(20);
Goto 1;
END;
Writeln(' ');
Writeln('Best solution(s) found:'):
While Not (Bestlist = Nil) Do

BEGIN
Bestsol := Bestlist”.value;
Write (' ');

Writeeq(Bestsol);
Bestlist := Bestlist™.Next;
END;

Writeln(' ');
Writeln('Computation of the rounded optimal

solution required:');
Write(' ');
Write('Additions: ');
Write(Trunc(Rdadd));
Write(' Multiplications: ');
Write(Trunc(Rdmult));
Write(' Compares: ');
Writeln(Trunc(Rdcomp));
Writeln(' ');
Write(Numex);
Writeln(' Points were expanded requiring');
Write(' 3 ’
Write('Additions: ');

r

Write(Trunc(Numadd));
Write(' Multiplications:
Write(Trunc(Nummult));

- Write(' Compares: ');
Writeln(Trunc(Numcomp));
Writeln(' ');
Compsc

')

:= Rdcomp + Numcomp + Rdadd * 1.1666 +

Numadd * 1.1666 + Rdmult * 4 + Nummult * 4;

Writeln('Computational complexity score
Writeln(' ');
END;

PROCEDURE Insertcon (Func : Recptr);
{ Insert the constraint function on to the
constraint list. }

BEGIN

If (Currcon = Nil) then

BEGIN
Confun := Func;
Currcon := Func

END

else

BEGIN
Currcon” .Next := Func;
Func” .Previous := Currcon;
Func”.Next := Nil;
Currcon := Func

END;

END;

PROCEDURE Parse (Func : Recptr);

, Compsc:0:3);

{ Parse a input string for the objective function or a

contraint function.

Start by setting all of the

coefficients to zero then process the input string
character by character in the following manner:

(1) If the input character is a number, then multiply

the number thusfar by ten and add the new number.

(2) If the input character is a ; then get the next input

string. This will allow function to span more than one
line. (3) If the input character is an operand, then set
the operand field of the node to that operand. 1If the

input chanacter is a X then set a flag to denote that we
are now looking for the variable number. If the input
character is a field separator space, +, or -,and we
have the coefficient value and the variable number;

LABEL

VAR

then, store the coefficient in the variable. }
1:;

Num,Value,Exp,Ten,Unt : Real;

I,J ¢ Integer;

C Char;

Xfound : Boolean;

BEGIN

For I :=1
Func” .V

Num := 0.

Xfound :=

3

@

=}
nouu
e e
O~

C := Pa
Case C
[} ()]

lxl 'Y

1~0% .

et
Tyt

to MAXVAR do
aluef1] := 0;

false;

.0,

to Length(Online)+l Do

rseline”.value[I];
of
'9': BEGIN
If (Num = 0.0) then

Num := Exp * (Ord(c) - Ord('0')) * Unt

else

Num := Exp * Num * Ten + (Ord(C) -

Oord('0')) * Unt;
If Not (Num = 0) then Exp := 1;

If (Unt < 1) then Unt := Unt / 10.0;

END;
BEGIN
1f Datafile then
Readln(Filevar, Online)
else
Readln(Online);
Goto 1
END;
1f Not Xfound then
BEGIN
Xfound := True;
Value
Num :
Ten :
Unt
END
else
BEGIN
Parserr := True;
I := 80
END;
Func”.Value[MAXVAR-1] := 1;
Func” .Value[MAXVAR-1] :=
Func”.Value[MAXVAR-1] + 1;
Func”.Value[MAXVAR-1] 3;
Func”.Value[MAXVAR-1] 5;

nun

== O 1

. O~
o

DR A BEGIN

90

Exp := 1;
If Xfound then
If (Num > 0) then
BEGIN
J := Trunc(Num);
Func”.Value[J] := Value;
Num := 0;
Xfound := False

A

END
else
BEGIN
Parserr := True;
I := 80
END;
END;
Y- BEGIN
Exp = -1;
If Xfound then
If (Num > 0) then
BEGIN
J := Trunc{Num);

Func”.Value{J] := Value;

Num := 0;
Xfound := False
END
else
BEGIN
Parserr := True;
I := 80
END;
END;
L' BEGIN
Ten := 1;
Unt := 0.1;
END;
else BEGIN
I := 80;

If Xfound then
If (Num > 0) then
BEGIN
J := Trunc(num);
Func” .Value[J]
END
else
Parserr := True;
END;
END; { Case }
END; { For loop }
If Xfound then
If (Num > 0) then
BEGIN
J := Trunc(Num);
Func”.Value[J] := Value;

Num := O;

Xfound := False:;
END
else

Parserr := True;
I1f (Func”.value[MAXVAR-1] > 0) then
Func”.Value[MAXVAR] := Num
END;

91

92

FUNCTION Evalfun (Funl, Fun2 : Recptr) : Real;

{ Evaluate a function; we will receive two nodes, one will
contain the coefficients for the variables and the other
will contain the value of the variables. Multiply the
coefficient by the value for each variable and sum the
result. }

VAR

I ¢ Integer;
Num : Real;
BEGIN
Num := 0;
For 1 := 1 to Numofvar Do

Num := Num + Funl”.value{I] * Fun2”.value[I];
Numadd := Numadd + Numofvar - 1;
Nummult := Nummult + Numofvar;
Evalfun := Num;

END;

PROCEDURE Roundcon;

{ Round the continuous solution. The first part of this
procedure will parse the continuous solution using the
same rules for numbers and ; as the previous parse. The
field separator will be a , and cause the value of the
variable to be stored. Once the continuous solution has
been parsed, the solution will be rounded using the
method stated in chapter III of the dissertation. }

LABEL

1,2;
VAR
Num, Ten, Unt, Exp : Real;
Rvalue : Array [l..MAXVAR] of Real;
I1,J,K ¢ Integer;

C : Char;
Pass : Boolean;
BEGIN
J := 0,
Num := 0.0;
Ten := 10.0;
Unt := 1.0;
Exp := 1.0;
1: FPor I:= 3 to 80 Do
BEGIN
C := Parseline”.Value[I];
Case C of
'o' .. '9': BEGIN
If (Num = 0.0) then
Num := Exp * (Ord(c)-0rd('0'))*Unt
else

Num := Exp * Num * Ten +
(Ord(C)-0rd('0"'))*Unt;
If Not (Num = 0.0) then Exp := 1.0;
If (Unt < 1) then Unt := Unt / 10.0
END;
'L BEGIN

4

Ten := 1.0;
Unt := 0.1
END;
)L, BEGIN
J 1= J + 1;
Rvalue[J] := Num;
Num := 0.0;
Ten := 10.0;
Unt := 1.0;
I1If (C = ')') then I := 80;
END;
HA BEGIN

1f Datafile then
Readln(Filevar, Online)

else
Readln(Online);
Goto 1
END;
o I 1= i;
else BEGIN
Parserr := True;
I := 80
END;
END; { Case}
END; {For loop}
If (J < Numofvar) then Parserr := True;
If Not Parserr then
BEGIN
New(consol);
For I := 1 to Numofvar Do

If Not Maxmin then
Consol”.Value[I] := Trunc(Rvalue[I]) + 1
else if (Rvalue[I] = Int(Rvalue[Il])) then

Consol”~.value[I] := Trunc(Rvalue[I]) - 1
else
Consol”.Value[I] := Trunc(Rvalue[I]);

For I := 1 to Numofvar Do
1f Consol”.Value[I] < O then
Consol”.value(I] := 0;
Datafun := Confun;
Repeat
Num := Evalfun (consol, Datafun);
Numcomp := Numcomp + 1l;
Pass := True;
Case Trunc(Datafun”.Value[MAXVAR-1]) of
1: If Not(Num=Datafun".Value[MAXVAR]) then

Pass := False;

2: 1f (Num=Datafun”.Value[MAXVAR]) then
Pass := False;

3: If (Num>=Datafun”.Value[MAXVAR]) then
Pass := False;

4: If (Num>Datafun”.Value[MAXVAR]) then
Pass := False;

5: If (Num<z=Datafun".Value[MAXVAR]) then

3

. Pass := PFalse;
6: 1f (Num<Datafun”.Value[MAXVAR]) then
Pass := False;
END; { Case }
If Not Pass then

BEGIN
J = 1;
Num := Datafun”.value(l];
For I := 2 to Numofvar Do
BEGIN
If Maxmin then
BEGIN
I1f (Datafun”.Value[I] > Num) then
BEGIN
J = I;
Num := Datafun”.value[I]
END;
END
else
BEGIN
1f (Datafun”.Value{I] < Num) then
BEGIN
J = 1;
Num := Datafun”.value[I]
END;
END
END;

If Maxmin then
Consol”~.vValue[J]
else
Consol”~.Value[J]
Num := 0.0;
For I := 1 to Numofvar do
Num := Num + Consol”.value(I]:;
If Num > 0 then
Goto 2
else
Parserr := True;

Consol ".Value(J] -1

Consol”".Value[J] + 1;

END;
Datafun := Datafun”.Next:
If Parserr then
patafun := Nil;
Until (Datafun = Nil)
END { No Parse error}

END;
PROCEDURE Initialigze;
LABEL
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;
VAR
Done : Boolean;
BEGIN
Openhelp;

{ Find the type of problem that the user wishes to solve. }

”

1: Writeln('Is the objective function to be maximized? '):;

Write('[yles/[n]lo/[h]lelp default = no ');
Readln(Yesno):;
If ((Yesno = 'y')or(Yesno = 'Y')) then

Maxmin := True
else If ((Yesno = 'h')or(Yesno = 'H')) then
BEGIN
Readhelp (1);
Goto 1
END
else
Maxmin := False;

{ Find out if the data input is comming from a data file

or the screen. }

2: Writeln('Do you have the functions in a data file? ');
Write('[yles/[n]o/[hlelp default = no ');
Readln(Yesno);

If ((Yesno = '"y')or(Yesno = 'Y')) then
Datafile := True
else If ((Yesno = 'h')or(Yesno = 'H')) then
BEGIN
Readhelp (2);
Goto 2
END
else
Datafile := False;

{ If we have a data file, then open the file for input. }

3: I1f Datafile then
BEGIN

{NOTE: When using IBM DOS, the assign and reset commands

can be used to open any given file. This will be
machine dependent. }
Write('Enter the file? ');
Readln(Filename);
Assign(Filevar, Filename);
Reset(Filevar)
END;
{ Get the number of variables. }
I1f Datafile then
Readln(Filevar, Numofvar)

else

BEGIN
Write('How many variables are in this problem? ');
Readln(Numofvar)

END;

Parseline := Addr(Online);

Parserr := False;

{ Get the objective function. }
S: If Datafile then
Readln(Filevar, Online)
else
BEGIN

Writeln('Enter the Objective Function/[hlelp '):
Readln(Online)

95

96

END;

1f ((Online = 'h')or(Online ='H')) then

BEGIN
Readhelp(5);
Goto §5;

END;

New(Opfun);

Opflag := True;

Parserr := False;

Parse(Opfun);

Done := Parserr;

{ Get the Constraint function(s). }

Opflag := False;
Confun := Nil;
Currcon := Nil:;

6: Repeat

If Datafile then
Readln(Filevar, Online)
else
BEGIN
Writeln('Enter the constraint
function/(hlelp/[qluit ');
Readln(Online)
END;
I1f ((Online='h')or(Online='H')) then
BEGIN

Readhelp(6);
Goto 6;
END;
1f (Parseline”.vValue{2] = '(') then Done :
If ((Parseline” .value[2]="q')or
(Parseline”.value[2]='Q')) then Done :

If Not Done then
BEGIN
New(Datafun);
Parse(Datafun);
Insertcon(Datafun)
END;
Until Done or Parserr;
1f Parserr then goto 8;
1f (Parseline”.Value{2]="'(') then goto 8;

: Writeln('Enter the optimal continuous

solution/(hlelp '):
Readln(Online);
If ((Online="h')or(Online='H')) then
BEGIN
Readhelp(7);
Goto 7
END;

: Numadd := 0;

Nummult := 0;

Numcomp := O;

If Not Parserr then Roundcon;
1f Parserr then

True;

True;

BEGIN
Writeln(' Could not find a rounded solution,
infeasiblity likely.');
Goto 12;
END;
1f Datafile then
Printproblem
else
BEGIN
Writeln('Rounded optimal continuous solution');
Writecon(Consol)
END;

9: Writeln('Do you wish to accept this rounded solution?');
Write('[yles/[nlo/[hlelp default = yes ')
Readln(Yesno);

If ((Yesno = 'h')or(Yesno='H')) then
BEGIN .
Readhelp(9);
Goto 9
END
else if ((Yesno = 'n')or(Yesno = 'N')) then
BEGIN
Dispose(Consol);
Writeln('Enter your rounded solution');
Readln(Online);
Roundcon
END;

10: Writeln('Enter the number of initial expansions');
Writeln('Integer or 0 for help'):
Readln(Calnum);

If (Calnum < 1) then
BEGIN
Readhelp(10); A\
Goto 10
END;
11: Writeln('Do you wish to see the nodes as they
are expanded? ');
Write('[yles/[n]o/[hlelp default =.no ')
Readln(Yesno):
I1f ((Yesno = 'h')or(Yesno='H')) then
BEGIN
Readhelp(1ll);
Goto 11
END
else if ((Yesno = 'y')or(Yesno = 'Y')) then
Dispex := True
else
Dispex := False;
{ set all of the initial values. }
Parfound := False;
Shortcut := False;
Stype := False;
New(Listone);
Listone”.Value := Consol;

97

98

Listone” .Next := Nil;

Listtwo”.Previous := Nil;

Listtwo := Nil;

Parlist := Nil;

Oddeven := False;

Finish := Parserr;

Rdadd := Numadd;

Rdmult := Nummult;

Rdcomp := Numcomp;

Numadd := 0;

Nummult := 0;

Numcomp := 0;

Numex := 0;

Numline := 0;

Startfun := Consol;

Startfun”.value[MAXVAR] := Evalfun(Startfun, Opfun);

Startfun”.value[MAXVAR-2] := 0.0;

Startfun”.Next := Nil;

Startfun”.Previous := Nil;
12: Bestsol := Startfun;

New(Bestlist);

Bestlist”.vValue := Bestsol;

Bestlist”™.Next := Nil;

Bestlist”.Previous := Nil;

END;

PROCEDURE Copyvar;

{ copy the value in the node Datafun to the node Expfun.

VAR
I : Integer;
BEGIN
For I := 1 to Numofvar Do
Expfun”.Value[I] := Datafun”.vValue(I];
Expfun®.value[MAXVAR-2] := 0;
Expfun”.Value[MAXVAR-1] := O;
0

Expfun”.value[MAXVAR] :=
END;

.
’

FUNCTION Eqfun (Funl, Fun2 : Recptr) : Boolean;
{ Compare two nodes if they have equal values for all

variables then return true else false. }
VAR '

I ¢ Integer;
BEGIN

Eqfun True;

For 1 1 to Numofvar do

If Not (Funl”.Value[I] = Fun2”.Value[I]) then
Eqfun := False;

END;

FUNCTION Conchk (Funl : Recptr) : Real;

{ Compare a node with the constraints. If the node
passes all of the constraints then return a zero;
if not, then return a one. }

}

MMV

VAR
Num : Real;
Fun : Recptr;
BEGIN
Conchk := 0;
Fun := Confun;
While Not (Fun = Nil) DO
BEGIN
Numcomp := Numcomp + 1;
Num := Evalfun (Funl, Fun);
Case Trunc(Fun”.vValue[MAXVAR-1]) of
1: If Not (Num=Fun".Value[MAXVAR]) then
Conchk := 1.0;
2: If (Num=Fun”.vValue[MAXVAR]) then
Conchk := 1.0;
3: If (Num>=Fun”.Value[MAXVAR]) then
Conchk := 1.0;
4: If (Num>Fun”.Value[MAXVAR]) then
Conchk := 1.0;
5: If (Num<=Fun”.Value[MAXVAR]) then

Conchk := 1.0;
6: If (Num<Fun~.value[MAXVAR]) then
Conchk := 1.0:
END;
Fun := Fun”.Next;
END;

END;

FUNCTION Searchpar(Funl : Recptr) : Boolean;

{ Search the parent list to see if a node is present.
All nodes are unique, that is if we generate a node
and then later generate the same node then we will
detect this fact and reset to pointer to the first
node that was generated. The parent list is a list

of pointers to nodes that have been expanded, therefore

if we have the same pointer as a member of the list
then we have a parent point. }
VAR
Lstelem : Listptr:
BEGIN
Searchpar := False;
Lstelem := Parlist;
While Not (Lstelem = Nil) do
BEGIN
If (Lstelem”.Value = Funl) then Searchpar := True;
Lstelem := Lstelem”.Next;
END;
END;

PROCEDURE Insertlist(Fun4 : Recptr);

{ Insert the node on the list of nodes to be expanded.
That is, we use two lists, one is the nodes currently
being expanded and the other is the nodes that will

be expanded next time. Also, when inserting the node,

99

maintain the order of the node to be expanded. For
a maximization problem the order is decreasing and
for minimization the order is increasing.

VAR
Funl : Listptr;
Fun2 : Recptr;

Fun3 : Listptr;
Fun5 : Listptr;
Done :@: Boolean;

BEGIN
If Oddeven then

Funl := Listone

else

Funl := Listtwo;

Done := False;

Fun3 := Nil;

While Not (Funl = Nil) and Not Done do
BEGIN

Fun2 := Funl”.Value;

If ((Fun4”.Value[MAXVAR] > Fun2”.Value[MAXVAR])
and Maxmin) or ((Fun4”.Value[MAXVAR] <
Fun2”.Value[MAXVAR]) and Not Maxmin) then

BEGIN
New(Fun5);

Fun5”.value := Fun4;
Fun5” .Next := Funl;
Fun5”.Previous := Fun3;
If Not (Fun3 = Nil) then
Fun3 " .Next := Fun}b
else
BEGIN
I1f Oddeven then
Listone := Funb
else
Listtwo := Fun5;
END;
If Not (Funl = Nil) then
Funl” .Previous := Fun$;
Done := True;

END

else if (Fun4 = Fun2) then Done := True

else

BEGIN
Fun3 := Funl;

Funl := Funl”.Next;

END;

END;
If Not Done then
BEGIN

New(Funb5);

Fun5”.vValue := Fun4;

Fun5” .Next := Nil;

Fun5~ .Previous := Fun3;

If Not (Fun3 = Nil) then

100

Fun3” .Next := Fun$

else
BEGIN
If Oddeven then
Listone := Funb
else
Listtwo := Fun$;
END;
END;

END;

PROCEDURE Insertfun;

{

Insert the node on to a master list of all nodes
generated in decreasing order. This procedure will

also determine if the node has been generated before

if so, it will reset the pointer to that first
occurrence., If the node has not been generated before,
then it will be evaluated with the constraint function(s)
to insure that it passes all constraints. Also,

it will determinine if the node should be placed on the
list to be expanded during the next pass. }

LABEL

1;

VAR

Onelst : Recptr:
Twolst : Recptr;

BEGIN
Onelst := Startfun;
Twolst := Nil;

While not (Onelst = Nil) and
(Onelst”.value[MAXVAR] > Expfun”.Value[MAXVAR]) Do
BEGIN

Twolst := Onelst:

Onelst Onelst”.Next;
END;
If Onelst = Nil then
BEGIN
Expfun”.Value[MAXVAR-2] := Conchk (Expfun);
Expfun”.Previous := Twolst:
Expfun”.Next := Nil:
Twolst” .Next := Expfun;

END
else if (Onelst”.value[MAXVAR] <
Expfun”.value{MAXVAR]) then
BEGIN
Expfun”.Value[MAXVAR-2] := Conchk (Expfun);
Expfun”.Next := Onelst;
Expfun”.Previous := Twolst;
Onelst” .Previous := Expfun;
If Not (Twolst = Nil) then
Twolst”™.Next := Expfun
else
Startfun := Expfun;
END

101

102

else
BEGIN
I1f Not Eqfun(Onelst, Expfun) then
BEGIN
Twolst := Onelst;
Onelst := Onelst”.Next;
Goto 1;
END;
Dispose(Expfun);
Expfun := Onelst;
END;
If Trunc(Expfun”.Value[MAXVAR-2]) = 0 then
BEGIN
I1f Not Parfound then
Insertlist(Expfun)
else if Not Searchpar(Expfun) then
if (Expfun”.vValue[MAXVAR] = Valex) then
Insertlist(Expfun);
END;
END;

PROCEDURE Stopline;
{ Stop and hold the display until the user enters
a return to continue. }

BEGIN
Write('Press RETURN to continue...');
Readln;
Writeln(' ');

END;

FUNCTION Searchlist (Funl : Recptr) : Boolean;

{ Once we have found a parent we will have to evaluate
each of the nodes we are about to expand to determine the
value that will cause the next node to be expanded. This
procedure will take the nodes that will be generated
and check to see if they are on the master list or not.
Next the procedure will determine if the nodes pass
the constraints, thereby allowing us to determine
the cut off value of the nodes that will be
expanded next time. }

LABEL

l, 2;
VAR
Onelst, Twolst : Recptr;
Pass : Boolean;
BEGIN
Searchlist := True;
Onelst := Startfun;
Twolst := Funl;
While Not (Onelst = Nil) and
(Onelst”.value[MAXVAR] > Twolst".Value[MAXVAR]) Do
Onelst := Onelst”.Next;
1: If Onelst = Nil then Goto 2
else If (Onelst”.Value[MAXVAR] <

s’

/m

Twolst”.value[MAXVAR]) then Goto 2;
1f Not Eqfun(Onelst, Twolst) then

BEGIN
Onelst := Onelst”.Next;
Goto 1;
END
else
Twolst := Onelst;
2: Pass := Not Searchpar(Twolst);
If Pass then
Twolst”.Value[MAXVAR-2] := Conchk(Twolst);
If (Twolst”.value[MAXVAR-2] = 1.0) then

Pass := False;
Searchlist := Pass;
END;

FUNCTION Parval (Datafun : Recptr) : Real;

{ Determine what is the value that will cause the maximum
gain for the next expansion. That is the node generated
must not be a parent and must pass all constraints. This
will be determined by searchlist. We then will determine
the value that will cause the maximum gain. A maximum
gain must be an improvement over the root node. In
the case where there is more than one node that generates

an improvement, we will take the best improvement. }
VAR

Num, Val : Real;
Fir,Pass : Boolean;
I ¢ Integer;

BEGIN
New(Expfun);
Fir := True;
Num := 0;
For I := 1 to Numofvar Do
BEGIN
Copyvar;
If Maxmin then
Expfun”.Value[I] := Datafun”.Value[I] + 1
else
Expfun”.Value[I] := Datafun”.value[I] - 1;
If (Expfun”.Value[I] >= 0) then
BEGIN
Val := Evalfun(Expfun, Opfun);
Expfun”.Value[MAXVAR] := Val;
Pass := Searchlist(Expfun);

If Pass then
If Fir then

BEGIN
Num := Val;
Fir := False;
END
else
BEGIN

If ((val > Num) and Maxmin) or

103

104

((val < Num) and Not Maxmin) then
Num := Val;
END;
END;
copyvar;
If Maxmin then
Expfun”.Value[I]
else
Expfun”.Value[l] := Datafun”.vValue[I] + 1;
If (Expfun”.value[I] >= 0) then

Datafun”.vValue[I] - 1

BEGIN
Val := Evalfun(Expfun, Opfun);
Expfun” .Value[MAXVAR] := Val;
Pass := Searchlist(Expfun);

If Pass then
If Fir then

BEGIN
Num := Val;
Fir := False;
END
else
BEGIN

1f ((val > Num) and Maxmin) or
((val < Num) and Not Maxmin) then

Num := Val;
END;
END;
END;
Dispose(Expfun);
Parval := Num;

END;

PROCEDURE Newbest;

{ If the current node being expanded is a better solution
to the problem, then reset the best solution list to
just that node. }

VAR
Onelist : Listptr;

BEGIN
While Not (Bestlist = Nil) Do

BEGIN
Onelist := Bestlist™.Next;
Dispose(Bestlist);
Bestlist := Onelist;
END;
New(Bestlist);
Bestlist”.Value := Datafun;
Bestlist™ .Next := Nil;
Bestlist”.Previous := Nil;
Bestsol := Datafun;
END;

PROCEDURE Addbest;
{ If the current node being expanded has the same

value as the best solution, then add it to the best
solution list. }

LABEL
1;
VAR
Onelist : Listptr;
BEGIN
Onelist := Bestlist;
While not (Onelist = Nil) do
BEGIN
If (Onelist”.Value = Datafun) then Goto 1;
Onelist := Onelist”™ .Next;
END;
New(Onelist);
Onelist”.value := Datafun;
Onelist” .Next := Bestlist;
Onelist”.Previous := Nil;
Bestlist”™ .Previous := Onelist;
Bestlist := Onelist;
l: Bestlist := Bestlist;
END;

PROCEDURE Expandlist;

{ This is the main work procedure, where the node is
expanded and placed on all the appropriate lists.
First, the node to be expanded is compared with the
best solution, if it is an improvement, then the best
solution list is set to that node. If it is the same
as the best solution, then the node is added to the
best solution list. Next, if we have already found our
first parent then determine the value that will cause an
improvement. The node is univariatly expanded to
identify all possible neighboring solutions. These
node values are copied into a generated node and _
checked against the constraints. That is, evaluate the
node, insure that it passes the constraints, insert it
onto the master list of nodes and if it passes the test,
place it on the list of nodes to be expanded next time.
Once we have a node expanded place it on
the parent list so it will not be expanded again. }

VAR

Done : Boolean;
I ! Integer;

BEGIN
If Oddeven then
Listelem := Listtwo
else
Listelem := Listone;
Done := (Listelem = Nil);
While Not Done Do
BEGIN
Datafun := Listelem”.Value;
Numex := Numex + 1;

I1f (Bestsol”.Value[MAXVAR] =

105

106

Datafun”.value[MAXVAR]) then Addbest;
I1f Maxmin then
If (Bestsol”.value[MAXVAR] <

Datafun”.Value[MAXVAR]) then Newbest;
If Not Maxmin then

If (Bestsol”.Value[MAXVAR] >
Datafun”.Value{MAXVAR]) then Newbest:

If Dispex then
BEGIN

Writeln(' ');

Writeln(' ');

Write('Node Expansion (');

Write(Numex);

Writeln(')');

Write(' ');
Numline := Numline + 3;
Writeegq(Datafun)
END;
If Parfound then
BEGIN
Valex := Parval(Datafun);

If ((Datafun”.vValue[MAXVAR] > Valex) and Maxmin) or
((Datafun”.vValue[MAXVAR] < Valex) and
Not Maxmin) then
Valex := Datafun”.Value[MAXVAR];
END;
For I := 1 to Numofvar Do
BEGIN
If Dispex and (Numline > 20) then
BEGIN
Stopline;
Numline := 0;
END;
New(Expfun);
Copyvar;
If Maxmin then
) Expfun”.Value(I] := Datafun”.value[I] + 1
else
Expfun®.value[I] := Datafun”.vValue[I] - 1;
If Not(Expfun”.value[I] < 0) then
BEGIN
Expfun”.value[MAXVAR] := Evalfun(Expfun, Opfun);
Insertfun;
I1f Dispex then
BEGIN
Write(' ');
Writeeq(Expfun);
Numline := Numline + 1;
END
END;
If Not Shortcut or
(Trunc(Expfun”.vValue[MAXVAR-2]) = 1) then
BEGIN
New(Expfun);

M‘

r

Copyvar;
I1f Maxmin then

Expfun”.vValue[1]
else

Expfun”.Value{[I] := Datafun”.value[l] + 1;

If Not (Expfun”.Value[I] < 0) then
BEGIN
Expfun”.Value[MAXVAR] :=
Eval fun(Expfun, Opfun);
Insertfun;
If Dispex then
BEGIN
Write(' "):
Writeeq(Expfun);
Numline := Numline + 1;
END
END
END;
If Dispex and (Numline > 20) then
BEGIN
Stopline;
Numline := 0;
END;
END;
Lstelem := Listelem”™.Next;
If Not (Parlist = Nil) then
Parlist”.Previous := Listelem;
Listelem™ .Next := Parlist;
Listelem”™.Previous := Nil;
Parlist := Listelem;
Listelem := Lstelem;
Done := (Listelem = Nil) or Stype;
If Stype then
If Not (Listelem = Nil) then
BEGIN
Expfun := Listelem”.Value;
If (Expfun”.vValue[MAXVAR] =
Datafun”.value[MAXVAR]) then
Done := PFalse;
END;
If ((3+Numline+2*Numofvar) > 20) and Dispex
BEGIN
Numline := 0;
Stopline;
END;
END;
While Not (Listelem = Nil) Do
BEGIN
Lstelem := Listelem”.Next;
Dispose(Listelem);
Listelem := Lstelem;
END;
If Oddeven then
Listtwo := Nil

Datafun”.value[I] - 1

then

107

108

else
Listone := Nil;
END;

FUNCTION Allpos(Func : Recptr) : Boolean;
{ Determine if all the coefficients of a function are
positive, if so then return true. }

VAR
I ¢ Integer;
BEGIN
Allpos := True;
For I := 1 to Numofvar Do
If (Func”.Value{I] < 0) then Allpos := False;
END;

PROCEDURE Switchlist;

{ A flag oddeven is used to determine which list is to
be expanded and which list is to be generated. This
procedure will flip the flag, and thereby the list. }

BEGIN

I1f Oddeven then

Oddeven := False
else
Oddeven := True;

END;

PROCEDURE Movelist;

{ Once we have determined that the top node to be expanded
is the first parent we need to remove all other parent
nodes from the list. }

VAR

Lstelem : Listptr;
Funl : Listptr;
Fun2 : Recptr;
BEGIN
1f Oddeven then
Listelem := Listtwo
else
Listelem := Listone;
Lstelem := Nil;
While Not (Listelem = Nil) do
BEGIN
Fun?2 := Listelem”.Value;
If Not Searchpar(Fun2) then
BEGIN
If Lstelem = Nil then
BEGIN
New(Lstelem);
Lstelem”™.Value := Fun2;
Lstelem”™.Next := Nil;
Lstelem” .Previous := Nil;
I1f Oddeven then
Listone := Lstelem
else

”

Listtwo := Lstelem;
END
else
BEGIN
New(Funl);
Funl”.Value := Fun2;
Funl” .Previous := Lstelem;
Funl”.Next := Nil;
Lstelem” .Next := Funl;
Lstelem := Funl;
END;
END;
Funl := Listelem”.Next;
Dispose(Listelem);
Listelem := Funl;
END;
I1f Oddeven then
Listtwo := Nil
else
Listone := Nil;
Switchlist;

END;

PROCEDURE Solveproblem;

{ The main control procedure. This procedure can be
divided into three main sections. The first section
will expand the list using a type I search for the
initial number of times the user requested.

The next section will set the flags so only the first
node is expanded and continue that expansion
until the first node on the list is a parent. The
parents on the remainder of the list will be removed.
The last section will expand the list until
there is not a list to be expanded. }
LABEL 1;
VAR
I ¢ Integer;
BEGIN
Chkpar := False;
For 1 := 0 to Calnum DO
BEGIN
Expandlist;
Switchlist;
If Oddeven then
Listelem := Listtwo
else
Listelem := Listone;
If (Listelem = Nil) then Goto 1;
END;

Chkpar := True;
Stype := True;
Shortcut := Allpos(Opfun);
I1f Oddeven then
Datafun := Listtwo”.Value

109

else

Datafun := Listone”.Value;
While Not Parfound Do
BEGIN
Expandlist;
Switchlist;
If Oddeven then
Listelem := Listtwo
else
Listelem := Listone;
If (Listelem = Nil) then Goto 1;
Datafun := Listelem”.Value;
Parfound := Searchpar(Datafun);
END;
Stype := False;
Movelist;

If Oddeven then
Listelem := Listtwo
else
Listelem := Listone;
Shortcut := False;
1: While not (Listelem = Nil) do
BEGIN
Expandlist;
Switchlist;
1f O0ddeven then
Listelem := Listtwo
else
Listelem := Listone;
END;
END;

BEGIN
{ The main procedure first initializes the problem.
I1f we did not have an error in the

initialization phase then it solves the problem
and prints the results. }
Initialize;
If Not Parserr then
BEGIN
Solveproblem;
Endprogram;
END
else
Writeln('ERROR in input string');
END.

110

Pl

APPENDIX C

TEST PROBLEMS

111

112

Problem # 1 [Claycombe and Sullivan, p. 194]
max 4,000x; + 7,000x,

subject to 1,200x; + 2,000x, < 6,000
25,000x; + 8,000x5 = 20,000

X1, X2 2 0 and integer

. Continuous Solution: (1.739,1.956)
Integer Solution: (5,0)

Problem # 2 [Taha, 1975, p. 175]

max x) + 2x2
subject to X + x5 = .9
°2X1 - X2 < .2

X1, X 2 0 and integer

Continuous Solution: (0,0.9)
Integer Solution: (0,0)

Problem # 3 [Taha, 1987, p. 338]

max 2x7 + x,
subject to 10x; + 10x, < 9
10x; + S5x, 21

X1, X9 2 0 and integer

Continuous Solution: (0.9,0)
Integer Solution: (infeasible)

Problem # 4 [Taha, 1987, p. 86]

max 2x1 + 4x2
subject to Xy *+ 2x9 = 5
X3 + Xy = 4

X1, X9 2 0 and integer

Continuous Solution: (0,2.5)
Integer Solution: (1,2)

.l

f”

Problem # 5 [Zionts, p. 485]
max 5x1 + 2x2

subject to 2xl + 2x2 < 9
3xl + X, < 11

X3, X2 2 0 and integer

Continuous Solution: (3.25,1.25)
Integer Solution: (3,1)

Problem # 6 [Hillier and Lieberman, p. 742]

min lel + 10x2
subject to 3x1 t Xy 2 6
X3 + Xo 2 3

Xy, X9 2 0 and integer

Continuous Solution: (1.5,1.5)
Integer Solution: (2,1)

Problem # 7 [salkin, p. 120]

min X) + X,
subject to Xy + 2.5x5 2 3
X + .4x9 2 1.2

X}, X 2 0 and integer

Continuous Solution: (0.8571,0.8571)
Integer Solution: (1,1)

Problem # 8 [Llewellyn, p. 271]

max 2x1 + 3x2
subject to Xy + 2x5 s 8
2x1 + %9 = 6

Xj, X9 2 0 and integer

Continuous Solution: (1.33,3.33)
Integer Solution: (0,4)

113

Problem # 9 [Ssalkin, p. 127]

max 3x1 + X9
subject to 2%y + 3x9 = 6
2X1 - 3X2 < 3

X3, X9 2 0 and integer
Continuous Solution: (2.25,0.50)
Integer Solution: (1,1)
Problem # 10 [Ozan, p. 354]
max 21xy + 27x,

subject to -5x; + 15x, = 30
l4x; + 2xp = 70

X1, Xp 2 0 and integer
Continuous Solution: (4.5,3.5)

Integer Solution: (4,3)

Problem # 11 [Ozan, p. 352]

max 7xl + 3x2
subject to -X) + 3xp9 = 6
< 35

7x1 + Xy
X1, Xp 2 0 and integer
Continuous Solution: (4.5,3.5)

Integer Solution: (4,3)

Problem # 12 [Ozan, p. 352]

max 4xl + 3x2
subject to 4x; + X9 = 10
2xy + 3x,p = 8

Xy, X9 2 0 and integer

Continuous Solution: (2.2,1.2)
Integer Solution: (2,1)

114

”

‘IF

Problem # 13 (Ozan, p. 352]
min 2xl + 3x2

12

subject to 2x1 + 7x2
6

X2

Xy, Xp 2 0 and integer

A v

Continuous Solution: (0,1.714)
Integer Solution: (0,2)

Problem # 14 [Ziont, p. 341)

max 5xy + 4x,
subject to 3%y + 3x9 =10
12xy + 6x, s 24

X3, X0 2 0 and integer

Continuous Solution: (0.666,2.666)
Integer Solution: (1,2)

Problem # 15 [Hillier and Lieberman, p. 715]

max Xy + 512

20

subject to X7 + 10x,
2

X1

(LYY

X1, X9 2 0 and integer
Continuous Solution: (2.0,1.8)
Integer Solution: (0,2)
Problem # 16 [Ozan, p. 351]
max 2x1 + 3x2

subject to 5%y - 2x, = 28
X1 + 2X2 < 35

X1, X9 2 0 and integer

Continuous Solution: (10.5,12.25)
Integer Solution: (9,13)

115

116

Problem # 17 [Ssalkin, p. 119]

min 2xy + 5x,

”

9

subject to 2%y + 2x,
22

2x1 + 6x2

v v

Xy, X9 2 0 and integer
Continuous Solution: (1.25,3.25)
Integer Solution: (2,3)
Problem # 18 [Taha, 1987, p. 338]
max X7 + X

subject to 2xy + 5xp = 16
6xy + 5xp = 30

Xy, Rp 2 0 and integer
Continuous Solution: (3.5,1.8)

Integer Solutions: (5,0); (3,2); (4,1)

Problem # 19 [Ozan, p. 325]

/"

max 2xl + 8x2

3
5
13

subject to 2%y - 6%,
‘Xl + 412
le + 2!2

A IA A

Xy, Xp 2 0 and integer
Continuous Solution: (4.2,2.3)
Integer Solution: (4,2)
Problem # 20 [Taha, 1975, p. 226]
max 2%y + 4x
23

1
6

subject to 2xy + 6x,

X3 - X2
X3 + X3

1A 1A 1A

Xy, X9 2 0 and integer

Continuous Solution: (3.25,2.75)
Integer Solution: (2,3)

~

Problem # 21 [Hillier and Lieberman, p. 743]

max 33x1 + 12x2

subject to -x) + 2x2 < 4
5X1 + 2!2 < 16
211 - Xz < 4

Xy, Xp 2 0 and integer

Continuous Solution: (2.666,1.333)
Integer Solution: (2,3)

Problem # 22 [Taha, 1987, p. 836]

max 2xy ¢+ Xy + 2x3
subject to 28y + Xp + X3 59
xl + 2X2 + 3X3 < 8

Xy, X9, X3 2 0 and integer
Continuous Solution: (3.8,0,1.4)
Integer Solution: (4,0,1)
Problem # 23 [Fogiel, p. 520]
max 9x1 + 6x2 + 5x3

subiject to 2xy + 3x5 + 7x3 = 17.50
4xl + 9x3 < 15

Xy, X3, X3 2 0 and integer

Continuous Solution: (3.75,3.333,0)
Integer Solution: (3,3,0)

Problem # 24 [Fogiel, p. 200)

max 3xy + 2x2 + X3
subject to 2x; + 5x2 + X3 = 12
6x1 + 8x2 s 22

X1, Xp, X3 2 0 and integer

Continuous Solution: (3.666,0,4.666)
Integer Solution: (3,0,6)

117

Problem # 25 [Lovett]

max x, + 2x2 + 3X3
subject to X] + 2xp + 3x3 s 10
X1 + X3 < 5
<1

X1
X1, X9, X3 2 0 and integer
Continuous Solution: (1,4,0.333)
Integer Solutions: (0,5,0); (1,3,1)

Problem # 26 [Taha, 1987, p. 337]

max 4xy + 6x2 + 2x3
subject to 4x7 - 4x, <5
-X3y + 6X2 <5
< 5

‘Xl + x2 + X3

X1, X, X3 2 0 and integer

Continuous Solution: (2.5,1.25,6.25)
Integer Solution: (2,1,6)

Problem # 27 [Hillier and Lieberman, p. 746]

max 2.1x) + 1.5xp + 1.15x3
subject to 33.5x1 + 25x, ¢+ 17.5%4 = 750
X + X2 + X3 = 30
.681 + .75!2 + X3 < 40

Xy, X9, X3 2 0 and integer

Continuous Solution: (14.0625,0,15.9375)
Integer Solution: (14,0,16)

Problem # 28 [0Ozan, p. 352]

max 2x1 + xop + 4x3
subject to 2%y - 3xp ¢+ 3x3 < 20
lle + 3X2 - X3 < 10
281 + Xp + X3 = 60

Xy, X9, X3 2 0 and integer

Continuous Solution: (0,8.333,15)
Integer Solution: (0,8,14)

118

Problem # 29 [Taha, 1987, p. 337]

max 3x1 + xq 4 3x3
subject to -x] + 2x9 + X3 = 4
4x9 - 3x3 = 2
X3 - 3x9 + 2x3 = 3

Xy, X9, X3 2 0 and integer
Continuous Solution: (5.333,3.0,3.333)
Integer Solution: (5,2,2)
Problem # 30 [Fogiel, p. 258])
max 3x3 + xp + 3x4
subject to 2%y + X9 + X3

Xy + 2x, 3x3
2!1 + 2x2 + X3

+
A A 1A
[3O S)

Ry, X7, X3 2 0 and integer

Continuous Solution: (0.2,0,1.6)
Integer Solution: (0,0,1)

Problem # 31 [Hillier and Lieberman, p. 743]

max 4xl - 2XZ + 7!3

subject to X1 + 5x3 < 10
X} + X9 - x3 51
681 - 512 <0

X1, X9, X3 2 0 and integer

Continuous Solution: (1.25,1.5,1.75)
Integer Solution: (0,0,2)

Problem # 32 [salkin, p. 155]

max X3 - Xxo ¢ 2x3

subject to 2x1 + 4%9 - X3 S 20
~8x1 + X2 + 3X3 < 10
2xy - 9x2 + 8xq = 6

X], X, X3 2 0 and integer

Continuous Solution: (1.9571,5.6857,6.6571)
Integer Solution: (4,4,4)

119

120

Problem # 33 [Salkin, p. 144]

max X1 + X + X3

subject to -4x; + 5xp + 2x3 =< 4
‘2!1 + 5!2 < 5
3xl - 2X9 + 2x3 = 6
2x1 - 5x» <1

Xy, X9, X3 2 0 and integer

Continuous Solution: (3.6304,2.4545,0)
Integer Solution: (3,2,0)

Problem # 34 [Salkin, p. 139]

max 4%y + 6x2 + 3x4

subject to Xy + 2%, < 5
9x1 + 2X2 - 4X3 < 8
-3x1 - 2X2 + 2X3 s 1
-le + 4x2 + 6x3 < 16

Xy, R, X3 2 0 and integer

Continuous Solution: (3.2941,0,5.4118)
Integer Solution: (3,0,5)

Problem # 35 [Ozan, p. 354]

max lel + 612 + 2x4
subject to 2x; + 2xp + 2x3 s 12
3X1 + Xop + 4X3 < 9
X1 <1
X2 <1
< 4

X3
Xy, X9, X3 2 0 and integer

Continuous Solution: (1,1,1.25)
Integer Solution: (1,1,1)

Problem #

Problem #

Problem #

Problem #

36 (Fogiel, p. 83]

max 8x; + 15x5 + 6x3
subject to X3 + 3x5 + x3
2x) + 2x5 + 2x3
3x; + 3x5 + 2x3

X1, X2, X3, X4 2 0 and integer

+ 20x4

+

+ +

2x4
3!4
5X4

Continuous Solution: (0,1.444,0,2.333)

Integer Solution: (1,1,0,2)

37 [Conley, p. 45)

+

max 4xl + 5x2

subject to Xy + 3x5 + 9x3 + 6x4
+ 7x4
7x1 + 8x2 + 18x3 + 3x4

6x1 + 6x2

Xy, X9, X3, X4 2 0 and integer

Continuous Solution: (2.8652,0,1.2871,0.2584)

Integer Solution: (1,2,1,0)

38 [Parker and Rardin, p. 401]

min 10x; + 8x5 + 3x3 + 1lxg4
subject to X t x3 + Txg 210
3Xl + 5x2 + x3 + Xq4 2 5
2x, + X3 > 2
X1, X3, X3, X4 2 0 and integer
Continuous Solution: (0,0.5652,0.8696,1.3043)
Integer Solution: (0,0,4,1)
39 [Taha, 1987, p. 106]
max 2X1 + X2 - 3X3 + 5X4
subject to Xy + 7x2 + 3x5 ¢+ 7x4 < 46
3XI - 12 + X3 + 2X4 < 8
2x1 + 3X2 - X3 + X4 < 10
X1, X3, X3, X4 2 0 and integer

9X3 + SX4

Continuous Solution: (0,1.7143,0,4.8571)

Integer Solution: (0,2,0,4)

s
s
s

9
12
16

leé
19
44

121

122

Problem # 40 [Taha, 1987, p. 106]

max -2X)
subject to X1
3xl

2xl

X1, X2, X3,

Continuous Solution:
Integer Solution: (O,

+ 6x9 + 3x3 - 2x4
+ Tx7 46
+ 3Xx9

3xq + Tx4
x3 + 2X4
X3 + X4

+ +
1A A 1A
®

10
x4 2 0 and integer

(0,2.2,10.2,0)
4,6,0)

Problem # 41 [Taha, 1987, p. 106]

max 3x1
subject to X1
3x1

le

xlr le x3l

Continuous Solution:
Integer Solution: (O,

Problem # 42 [ISE 326 Project]
max 200x,

subject to 22x,
le

2X1

X

4!1

10Xl

X1, X2, X3,

Continuous Solution:
Integer Solution: (5,

- X2 + 3X3 + 4X4

+ Txy + 3x45 ¢ Tx4 f 36
- Xo + X3 + 2x4 s

+ 3x2 - X3 + X4 < 10

Xq 2 0 and integer

(0,2.2,10.2,0)
2,10,0)

+ 150x, ¢+ 150x4 + 250x 4
+ 27X3

+ 5x, + 2x3 + 4x4

+ 8xy + Xq * 5x4

+ 10x, + 8x4

+ 8!2 + 16X3 + 10X4

+ 14x2 + 8x5 + 12x4

x4 2 0 and integer

(5.4545,0,0,13.0682)

0,0,13)

1A A A A A A

120
200
140
110
240
320

Problem # 43 [Conley, p. 54]

max 20x; + 30x,5 + 40x3 + 45x4 +55x5 + 60x¢

subject to 8x; + 8xy + 3x3 + 12x4 + 8xg + 4xg
2xy) + 4x9 + 10x3 + 4x4 + 2xg + 6bXxg
3xy + 1x, + 4x3 + 2x4 + 4x5 + 10xg

1A A A

150
150
150

Xy, Xy, X3, R4, Xg, Xg 2 0 and integer

Continuous Solution: (0,0,8.5366,0,12.1951,6.7073)

Integer Solution: (0,0,8,0,12,7)

Problem # 44 [Conley, p. 146]

max 20xi + 30x, + 35x8 + 50x4 +62x5 + 66x6 + 70x7
xg + 90xg9 + 100x
9 10
subject to X] + 4xp + 3x3 + 2x4 + 5x5 + lx6 + 2x7
+ 5x8 + X9 + xlo < 2 700
le I X9 + 2X3 + 7X4 + 3!5 + 3x6 + 2X7

+ x8 6!9 + xlo < 2,700

Xy + 4!2 + 313 + 2!4 + Xs + 4!6 + 2!7

+ 2xg + Xg + 2xjo < 2,700

-+
+

le 5X2 + 2!3 + X4 + 2!5
+ 3“8 + xg ¢ leo < 2,700

Xe + 317

Xy, X2, X3, X4, X5, Xg, X9, Xg, Xg, X390 2 O and integer

Continuous Solution: (0,0,0,0,0,330.8824,0,397.0588,

185.2941,198.5294)
Integer Solution: (0,0,0,0,0,327,0,397,187,199)

Problem # 45 [Conley, p. 141]

max 20x7 + 15x4 + 19x3 + 27x, + 34x5 + 42x6

+ 21lxg + 90xg + 66x + 15xy77 + 75x
+ 88X14 + 62x15 + 6$X16 + ngl7 + Si
+ 29820

subject to 4x1 + 5x + 2x4 + 2x + xg + 5xg + 6x9
gxll + lez + 2213 + 8Xl4 + 68
+ 6x15 + 5x16 + xl7 + xle + 5x19 + 5!20

+ 4X9 + 3Xlo +

xq + x£x+ 8x + 6x4 + 4x5 + 2x6 + 3x7

+ 2x + 2x
+ X3¢ + 3817 + 4x18 + 2119 + §82 %

+ 58x
2 + l4x
xls + 9

+ 588

A

+ 2!8

t 6x15
Y800

124

3x1 + 2x 3 + 2x + Xg + x¢g + 3x7 + Xg
Xy

t xg # 2"10 v 3xyy +hamgp e Sxiy 4 xpy ¢ Rps
+ x16 t 6xy7 + x38 ¢ 5!19 + 2x20 < 3 300

2x; + 2x2 + 2x4 ¢ 3xy4 + Zx; + 2x + xq9 + 4xg
x

13 ¢ 5*13 + 2xy5

+ x + + 381 + 2x1
+ lx16 + 9x17 + %xla + gxlg + 4x2° 800

Xy, X9, X3, R4, X5, Xg, Xq, Xg, Kg, X1, X313, X33, X13.
X14+ X15. X136/ X17. X188, X19. X209 2 0 and 1nteqer

Continuous Solution: (0,0,0,0,0,0,0,0,575.7576,0,0,0,0,
0,0,0,345.4545,0,230.3030,0)

B&B Integer Solution: (0,0,0,0,0,0,0,0,573,0,0,0,0,0,0,0,
344,3,232,0)

IESIP Integer Solution: (0,0,0,0,0,0,0,0,575,0,0,0,0,0,0,0,

345,0,231,0)

IESIP Integer Solution: (0,0,0,0,0,0,0,0,576,0,0,0,0,0,0,0,

345,0,230,0)

b

APPROVAL

AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER
LINEAR PROGRAMMING PROBLEMS

By F.R. Fogle

The information in this report has been reviewed for technical content. Review of any
information concerning Department of Defense or nuclear energy activities or programs has been
made by the MSFC Secrity Classification Officer. This report, in its entirety, has been determined
to be unclassified.

s Wt

L. Dox WOODRUFF
Chief, Systems Analysis Dmsnon

£ %W&é%’—

AVILLIAN B. CHUBB
/' Director. Systems Analysis and Integration Laboratory

¥ U.S. GOVERNMENT PRINTING OFFICE 1990-531—081/20238

125

y

’

”

